Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Developing cost-effective and high-efficiency oxygen reduction reaction (ORR) catalysts is imperative for promoting the substantial progress of fuel cells and metal-air batteries. The coordination and geometric engineering of single-atom catalysts (SACs) occurred the promising approach to overcome the thermodynamics and kinetics problems in high-efficiency electrocatalysis. Herein, we rationally constructed atomically dispersed Co atoms on porous N-enriched graphene material C2N (CoSA-C2N) for efficient oxygen reduction reaction (ORR). Systematic characterizations demonstrated the active sites for CoSA-C2N is as identified as coordinatively unsaturated Co-N2 moiety, which exhibits ORR intrinsic activity. Structurally, the porous N-enriched graphene framework in C2N could effectively increase the accessibility to the active sites and promote mass transfer rate, contributing to improved ORR kinetics. Consequently, CoSA-C2N exhibited superior ORR performance in both acidic and alkaline conditions as well as impressive long-term durability. The coordination and geometric engineering of SACs will provide a novel approach to advanced catalysts for energy related applications.
Barrio, J.; Pedersen, A.; Feng, J. Y.; Sarma, S. C.; Wang, M. N.; Li, A. Y.; Yadegari, H.; Luo, H.; Ryan, M. P.; Titirici, M. M. et al. Metal coordination in C2N-like materials towards dual atom catalysts for oxygen reduction. J. Mater. Chem. A 2022, 10, 6023–6030.
Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. P. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res. Energy 2022, 1: e9120010.
Zhang, L. C.; Liang, J.; Yue, L. C.; Dong, K.; Li, J.; Zhao, D. L.; Li, Z. R.; Sun, S. J.; Luo, Y. S.; Liu, Q.; Cui, G. W.; Alshehri, A. A.; Guo, X. D.; Sun, X. P. Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation. Nano Res. Energy 2022, 1: e9120028.
Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.
Deng, Y. J.; Luo, J. M.; Chi, B.; Tang, H. B.; Li, J.; Qiao, X. C.; Shen, Y. J.; Yang, Y. J.; Jia, C. M.; Rao, P. et al. Advanced atomically dispersed metal-nitrogen-carbon catalysts toward cathodic oxygen reduction in PEM fuel cells. Adv. Energy Mater. 2021, 11, 2101222.
Han, Y. H.; Wang, Y. G.; Xu, R. R.; Chen, W. X.; Zheng, L. R.; Han, A. J.; Zhu, Y. Q.; Zhang, J.; Zhang, H. B.; Luo, J. et al. Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. Energy Environ. Sci. 2018, 11, 2348–2352.
Huang, J.; Sementa, L.; Liu, Z. Y.; Barcaro, G.; Feng, M.; Liu, E. S.; Jiao, L.; Xu, M. J.; Leshchev, D.; Lee, S. J. et al. Experimental sabatier plot for predictive design of active and stable Pt-alloy oxygen reduction reaction catalysts. Nat. Catal. 2022, 5, 513–523.
Inaba, M.; Zana, A.; Quinson, J.; Bizzotto, F.; Dosche, C.; Dworzak, A.; Oezaslan, M.; Simonsen, S. B.; Kuhn, L. T.; Arenz, M. The oxygen reduction reaction on Pt: Why particle size and interparticle distance matter. ACS Catal. 2021, 11, 7144–7153.
Jiang, Z. L.; Sun, W. M.; Shang, H. S.; Chen, W. X.; Sun, T. T.; Li, H. J.; Dong, J. C.; Zhou, J.; Li, Z.; Wang, Y. et al. Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions. Energy Environ. Sci. 2019, 12, 3508–3514.
Jose, V.; Nsanzimana, J. M. V.; Hu, H. M.; Choi, J.; Wang, X.; Lee, J. M. Highly efficient oxygen reduction reaction activity of N-doped carbon-cobalt boride heterointerfaces. Adv. Energy Mater. 2021, 11, 2100157.
Jia, Y. L.; Xue, Z. Q.; Yang, J.; Liu, Q. L.; Xian, J. H.; Zhong, Y. C.; Sun, Y. M.; Zhang, X. X.; Liu, Q. H.; Yao, D. X. et al. Tailoring the electronic structure of an atomically dispersed zinc electrocatalyst: Coordination environment regulation for high selectivity oxygen reduction. Angew. Chem., Int. Ed. 2022, 61, e202110838.
Guo, F. J.; Zhang, M. Y.; Yi, S. C.; Li, X. X.; Xin, R.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M.; Liu, Y. J. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res. Energy 2022, 1: e9120027.
Liu, K.; Fu, J. W.; Lin, Y. Y.; Luo, T.; Ni, G. H.; Li, H. M.; Lin, Z.; Liu, M. Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction. Nat. Commun. 2022, 13, 2075.
Luo, E. G.; Chu, Y. Y.; Liu, J.; Shi, Z. P.; Zhu, S. Y.; Gong, L. Y.; Ge, J. J.; Choi, C. H.; Liu, C. P.; Xing, W. Pyrolyzed M-Nx catalysts for oxygen reduction reaction: Progress and prospects. Energy Environ. Sci. 2021, 14, 2158–2185.
Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Zhu, Y. Q.; Wang, Y.; Dong, J. C.; Tian, S. B.; Cheong, W. C. et al. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 16086–16090.
Hou, Y.; Qiu, M.; Kim, M. G.; Liu, P.; Nam, G.; Zhang, T.; Zhuang, X. D.; Yang, B.; Cho, J.; Chen, M. W. et al. Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 2019, 10, 1392.
Li, L. L.; Hasan, I.; Farwa; He, R. N. Peng, L. W.; Xu, N. N.; Niazi, N. K.; Zhang, J. N.; Qiao, J. L. Copper as a single metal atom based photo-, electro- and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: A review. Nano Res. Energy 2022, 1: e9120015.
Mahmood, J.; Li, F.; Jung, S. M.; Okyay, M. S.; Ahmad, I.; Kim, S. J.; Park, N.; Jeong, H. Y.; Baek, J. B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotech. 2017, 12, 441–446.
Shang, H. S.; Jiang, Z. L.; Zhou, D. N.; Pei, J. J.; Wang, Y.; Dong, J. C.; Zheng, X. S.; Zhang, J. T.; Chen, W. X. Engineering a metal-organic framework derived Mn-N4-CxSy atomic interface for highly efficient oxygen reduction reaction. Chem. Sci. 2020, 11, 5994–5999.
Shi, L.; Lin, X. N.; Liu, F.; Long, Y. D.; Cheng, R. Y.; Tan, C. H.; Yang, L.; Hu, C. G.; Zhao, S. L.; Liu, D. Geometrically deformed iron-based single-atom catalysts for high-performance acidic proton exchange membrane fuel cells. ACS Catal. 2022, 12, 5397–5406.
An, Z.; Li, H. Q.; Zhang, X. M.; Xu, X. L.; Xia, Z. X.; Yu, S. S.; Chu, W. L.; Wang, S. L.; Sun, G. Q. Structural evolution of a PtRh nanodendrite electrocatalyst and its ultrahigh durability toward oxygen reduction reaction. ACS Catal. 2022, 12, 3302–3308.
Yang, G. G.; Zhu, J. W.; Yuan, P. F.; Hu, Y. F.; Qu, G.; Lu, B. A.; Xue, X. Y.; Yin, H. B.; Cheng, W. Z.; Cheng, J. Q. et al. Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nat. Commun. 2021, 12, 1734.
Yu, D. S.; Ma, Y. C.; Hu, F.; Lin, C. C.; Li, L. L.; Chen, H. Y.; Han, X. P.; Peng, S. J. Dual-sites coordination engineering of single atom catalysts for flexible metal-air batteries. Adv. Energy Mater. 2021, 11, 2101242.
Wan, J. W.; Zhao, Z. H.; Shang, H. S.; Peng, B.; Chen, W. X.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Cao, R.; Sarangi, R. et al. In situ phosphatizing of triphenylphosphine encapsulated within metal-organic frameworks to design atomic Co1-P1N3 interfacial structure for promoting catalytic performance. J. Am. Chem. Soc. 2020, 142, 8431–8439.
Xu, W. J.; Tang, H.; Gu, H. F.; Xi, H. Y.; Wu, P. F.; Liang, B. L.; Liu, Q. Q.; Chen, W. X. Research progress of asymmetrically coordinated single-atom catalysts for electrocatalytic reactions. J. Mater. Chem. A 2022, 10, 14732–14746.
Wang, Y. L.; Shi, R.; Shang, L.; Waterhouse, G. I. N.; Zhao, J. Q.; Zhang, Q. H.; Gu, L.; Zhang, T. R. High-efficiency oxygen reduction to hydrogen peroxide catalyzed by nickel single-atom catalysts with tetradentate N2O2 coordination in a three-phase flow cell. Angew. Chem., Int. Ed. 2020, 59, 13057–13062.
Zhang, J. Q.; Zhao, Y. F.; Chen, C.; Huang, Y. C.; Dong, C. L.; Chen, C. J.; Liu, R. S.; Wang, C. Y.; Yan, K.; Li, Y. D. et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118–20126.
Wu, F.; Pan, C.; He, C. T.; Han, Y. H.; Ma, W. J.; Wei, H.; Ji, W. L.; Chen, W. X.; Mao, J. J.; Yu, P. et al. Single-atom Co-N4 electrocatalyst enabling four-electron oxygen reduction with enhanced hydrogen peroxide tolerance for selective sensing. J. Am. Chem. Soc. 2020, 142, 16861–16867.
Guan, Q. Q.; Zhu, C. W.; Lin, Y.; Vovk, E. I.; Zhou, X. H.; Yang, Y.; Yu, H. C.; Cao, L. N.; Wang, H. W.; Zhang, X. H. et al. Bimetallic monolayer catalyst breaks the activity-selectivity trade-off on metal particle size for efficient chemoselective hydrogenations. Nat. Catal. 2021, 4, 840–849.
Zhong, W. H.; Qiu, Y.; Shen, H. J.; Wang, X. J.; Yuan, J. Y.; Jia, C. Y.; Bi, S. W.; Jiang, J. Electronic spin moment As a catalytic descriptor for Fe single-atom catalysts supported on C2N. J. Am. Chem. Soc. 2021, 143, 4405–4413.
Zhou, Y.; Yu, Y. N.; Ma, D. S.; Foucher, A. C.; Xiong, L.; Zhang, J. H.; Stach, E. A.; Yue, Q.; Kang, Y. J. Atomic Fe dispersed hierarchical mesoporous Fe-N-C nanostructures for an efficient oxygen reduction reaction. ACS Catal. 2021, 11, 74–81.
Ismail, N.; Qin, F. J.; Fang, C. H.; Liu, D.; Liu, B. H.; Liu, X. Y.; Wu, Z. L.; Chen, Z.; Chen, W. X. Electrocatalytic acidic oxygen evolution reaction: From nanocrystals to single atoms. Aggregate 2021, 2, e106.
Shinde, S. S.; Lee, C. H.; Yu, J. Y.; Kim, D. H.; Lee, S. U.; Lee, J. H. Hierarchically designed 3D holey C2N aerogels as bifunctional oxygen electrodes for flexible and rechargeable Zn-air batteries. ACS Nano 2018, 12, 596–608.
Xu, J. T.; Mahmood, J.; Dou, Y. H.; Dou, S. X.; Li, F.; Dai, L. M.; Baek, J. B. 2D frameworks of C2N and C3N as new anode materials for lithium-ion batteries. Adv. Mater. 2017, 29, 1702007.
Zhang, J. Q.; Zhao, Y. F.; Guo, X.; Chen, C.; Dong, C. L.; Liu, R. S.; Han, C. P.; Li, Y. D.; Gogotsi, Y.; Wang, G. X. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 2018, 1, 985–992.
Lin, L.; Ni, Y. X.; Shang, L.; Sun, H. X.; Zhang, Q.; Zhang, W.; Yan, Z. H.; Zhao, Q.; Chen, J. Atomic-level modulation-induced electron redistribution in Co coordination polymers elucidates the oxygen reduction mechanism. ACS Catal. 2022, 12, 7531–7540.
Yin, H. B.; Yuan, P. F.; Lu, B. A.; Xia, H. C.; Guo, K.; Yang, G. G.; Qu, G.; Xue, D. P.; Hu, Y. F.; Cheng, J. Q. et al. Phosphorus-driven electron delocalization on edge-type FeN4 active sites for oxygen reduction in acid medium. ACS Catal. 2021, 11, 12754–12762.
Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.
Xu, H. B.; Jia, H. X.; Li, H. Z.; Liu, J.; Gao, X. W.; Zhang, J. C.; Liu, M.; Sun, D. L.; Chou, S. L.; Fang, F. et al. Dual carbon-hosted Co-N3 enabling unusual reaction pathway for efficient oxygen reduction reaction. Appl. Catal. B:Environ. 2021, 297, 120390.
Min, Y.; Zhou, X.; Chen, J. J.; Chen, W. X.; Zhou, F. Y.; Wang, Z. Y.; Yang, J.; Xiong, C.; Wang, Y.; Li, F. T. et al. Integrating single-cobalt-site and electric field of boron nitride in dechlorination electrocatalysts by bioinspired design. Nat. Commun. 2021, 12, 303.
Sun, M. R.; Chen, C. L.; Wu, M. H.; Zhou, D. N.; Sun, Z. Y.; Fan, J. L.; Chen, W. X.; Li, Y. J. Rational design of Fe-N-C electrocatalysts for oxygen reduction reaction: From nanoparticles to single atoms. Nano Res. 2021, 15, 1753–1778.
Zhu, Y. P.; Li, J. J.; Chen, Y. B.; Zou, J.; Cheng, Q. Q.; Chen, C.; Hu, W. B.; Zou, L. L.; Zou, Z. Q.; Yang, B. et al. Switching the oxygen reduction reaction pathway via tailoring the electronic structure of FeN4/C catalysts. ACS Catal. 2021, 11, 13020–13027.
Zou, J.; Chen, C.; Chen, Y. B.; Zhu, Y. P.; Cheng, Q. Q.; Zou, L. L.; Zou, Z. Q.; Yang, H. Facile steam-etching approach to increase the active site density of an ordered porous Fe-N-C catalyst to boost oxygen reduction reaction. ACS Catal. 2022, 12, 4517–4525.
Noh, W. Y.; Mun, J.; Lee, Y.; Kim, E. M.; Kim, Y. K.; Kim, K. Y.; Jeong, H. Y.; Lee, J. H.; Song, H. K.; Lee, G. et al. Molecularly engineered carbon platform to anchor edge-hosted single-atomic M-N/C (M = Fe, Co, Ni, Cu) electrocatalysts of outstanding durability. ACS Catal. 2022, 12, 7994–8006.
Li, Y. Y.; Zhang, P. Y.; Wan, L. Y.; Zheng, Y. P.; Qu, X. M.; Zhang, H. K.; Wang, Y. S.; Zaghib, K.; Yuan, J. Y.; Sun, S. H. et al. A general carboxylate-assisted approach to boost the ORR performance of ZIF-derived Fe/N/C catalysts for proton exchange membrane fuel cells. Adv. Funct. Mater. 2021, 31, 2009645.
Guo, J. N.; Li, B. J.; Zhang, Q. Y.; Liu, Q. T.; Wang, Z. L.; Zhao, Y. F.; Shui, J. L.; Xiang, Z. H. Highly accessible atomically dispersed Fe-Nx sites electrocatalyst for proton-exchange membrane fuel cell. Adv. Sci. 2021, 8, 2002249.
Zhang, Q. R.; Kumar, P.; Zhu, X. F.; Daiyan, R.; Bedford, N. M.; Wu, K. H.; Han, Z. J.; Zhang, T. R.; Amal, R.; Lu, X. Y. Electronically modified atomic sites within a multicomponent Co/Cu composite for efficient oxygen electroreduction. Adv. Energy Mater. 2021, 11, 2100303.