AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Coordinatively unsaturated single Co atoms immobilized on C2N for efficient oxygen reduction reaction

Wenjing Xu1,2,§Yidong Sun3,§Jiaqi Zhou4Maoqi Cao2( )Jun Luo2Haili Mao2Pengfei Hu5,6Hongfei Gu1Huazhang Zhai1Huishan Shang1,4( )Zhi Cai5( )
Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Key Laboratory of Efficient and Comprehensive Utilization of Biomass-based Agricultural and Forestry Wastes of Qiannan, Qiannan Normal University for Nationalities, Duyun 558000, China
School of Physics and Technology, and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan 430072, China
School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
School of Physics, Beihang University, Beijing 100191, China
Research Institute of Aero-Engine, Beihang University, Beijing 102206, China

§ Wenjing Xu and Yidong Sun contributed equally to this work.

Show Author Information

Graphical Abstract

Surprising catalytic activity can be obtained by anchoring metal single atoms through C2N supports with unique regular structures. The loading of Co metal atoms on C2N materials was designed for electrocatalytic oxygen reduction reaction (ORR) to H2O. The catalytic activity of CoSA-C2N catalysts with Co-N2 active sites is higher than that of C2N catalysts. This work provides a novel and efficient single-atom catalyst for ORR.

Abstract

Developing cost-effective and high-efficiency oxygen reduction reaction (ORR) catalysts is imperative for promoting the substantial progress of fuel cells and metal-air batteries. The coordination and geometric engineering of single-atom catalysts (SACs) occurred the promising approach to overcome the thermodynamics and kinetics problems in high-efficiency electrocatalysis. Herein, we rationally constructed atomically dispersed Co atoms on porous N-enriched graphene material C2N (CoSA-C2N) for efficient oxygen reduction reaction (ORR). Systematic characterizations demonstrated the active sites for CoSA-C2N is as identified as coordinatively unsaturated Co-N2 moiety, which exhibits ORR intrinsic activity. Structurally, the porous N-enriched graphene framework in C2N could effectively increase the accessibility to the active sites and promote mass transfer rate, contributing to improved ORR kinetics. Consequently, CoSA-C2N exhibited superior ORR performance in both acidic and alkaline conditions as well as impressive long-term durability. The coordination and geometric engineering of SACs will provide a novel approach to advanced catalysts for energy related applications.

Electronic Supplementary Material

Download File(s)
12274_2022_5212_MOESM1_ESM.pdf (3 MB)

References

[1]

Barrio, J.; Pedersen, A.; Feng, J. Y.; Sarma, S. C.; Wang, M. N.; Li, A. Y.; Yadegari, H.; Luo, H.; Ryan, M. P.; Titirici, M. M. et al. Metal coordination in C2N-like materials towards dual atom catalysts for oxygen reduction. J. Mater. Chem. A 2022, 10, 6023–6030.

[2]

Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. P. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res. Energy 2022, 1: e9120010.

[3]

Zhang, L. C.; Liang, J.; Yue, L. C.; Dong, K.; Li, J.; Zhao, D. L.; Li, Z. R.; Sun, S. J.; Luo, Y. S.; Liu, Q.; Cui, G. W.; Alshehri, A. A.; Guo, X. D.; Sun, X. P. Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation. Nano Res. Energy 2022, 1: e9120028.

[4]

Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

[5]

Deng, Y. J.; Luo, J. M.; Chi, B.; Tang, H. B.; Li, J.; Qiao, X. C.; Shen, Y. J.; Yang, Y. J.; Jia, C. M.; Rao, P. et al. Advanced atomically dispersed metal-nitrogen-carbon catalysts toward cathodic oxygen reduction in PEM fuel cells. Adv. Energy Mater. 2021, 11, 2101222.

[6]

Han, Y. H.; Wang, Y. G.; Xu, R. R.; Chen, W. X.; Zheng, L. R.; Han, A. J.; Zhu, Y. Q.; Zhang, J.; Zhang, H. B.; Luo, J. et al. Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. Energy Environ. Sci. 2018, 11, 2348–2352.

[7]

Huang, J.; Sementa, L.; Liu, Z. Y.; Barcaro, G.; Feng, M.; Liu, E. S.; Jiao, L.; Xu, M. J.; Leshchev, D.; Lee, S. J. et al. Experimental sabatier plot for predictive design of active and stable Pt-alloy oxygen reduction reaction catalysts. Nat. Catal. 2022, 5, 513–523.

[8]

Inaba, M.; Zana, A.; Quinson, J.; Bizzotto, F.; Dosche, C.; Dworzak, A.; Oezaslan, M.; Simonsen, S. B.; Kuhn, L. T.; Arenz, M. The oxygen reduction reaction on Pt: Why particle size and interparticle distance matter. ACS Catal. 2021, 11, 7144–7153.

[9]

Jiang, Z. L.; Sun, W. M.; Shang, H. S.; Chen, W. X.; Sun, T. T.; Li, H. J.; Dong, J. C.; Zhou, J.; Li, Z.; Wang, Y. et al. Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions. Energy Environ. Sci. 2019, 12, 3508–3514.

[10]

Jose, V.; Nsanzimana, J. M. V.; Hu, H. M.; Choi, J.; Wang, X.; Lee, J. M. Highly efficient oxygen reduction reaction activity of N-doped carbon-cobalt boride heterointerfaces. Adv. Energy Mater. 2021, 11, 2100157.

[11]

Jia, Y. L.; Xue, Z. Q.; Yang, J.; Liu, Q. L.; Xian, J. H.; Zhong, Y. C.; Sun, Y. M.; Zhang, X. X.; Liu, Q. H.; Yao, D. X. et al. Tailoring the electronic structure of an atomically dispersed zinc electrocatalyst: Coordination environment regulation for high selectivity oxygen reduction. Angew. Chem., Int. Ed. 2022, 61, e202110838.

[12]

Guo, F. J.; Zhang, M. Y.; Yi, S. C.; Li, X. X.; Xin, R.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M.; Liu, Y. J. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res. Energy 2022, 1: e9120027.

[13]

Liu, K.; Fu, J. W.; Lin, Y. Y.; Luo, T.; Ni, G. H.; Li, H. M.; Lin, Z.; Liu, M. Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction. Nat. Commun. 2022, 13, 2075.

[14]

Luo, E. G.; Chu, Y. Y.; Liu, J.; Shi, Z. P.; Zhu, S. Y.; Gong, L. Y.; Ge, J. J.; Choi, C. H.; Liu, C. P.; Xing, W. Pyrolyzed M-Nx catalysts for oxygen reduction reaction: Progress and prospects. Energy Environ. Sci. 2021, 14, 2158–2185.

[15]

Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Zhu, Y. Q.; Wang, Y.; Dong, J. C.; Tian, S. B.; Cheong, W. C. et al. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 16086–16090.

[16]

Hou, Y.; Qiu, M.; Kim, M. G.; Liu, P.; Nam, G.; Zhang, T.; Zhuang, X. D.; Yang, B.; Cho, J.; Chen, M. W. et al. Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 2019, 10, 1392.

[17]

Li, L. L.; Hasan, I.; Farwa; He, R. N. Peng, L. W.; Xu, N. N.; Niazi, N. K.; Zhang, J. N.; Qiao, J. L. Copper as a single metal atom based photo-, electro- and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: A review. Nano Res. Energy 2022, 1: e9120015.

[18]

Mahmood, J.; Li, F.; Jung, S. M.; Okyay, M. S.; Ahmad, I.; Kim, S. J.; Park, N.; Jeong, H. Y.; Baek, J. B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotech. 2017, 12, 441–446.

[19]

Shang, H. S.; Jiang, Z. L.; Zhou, D. N.; Pei, J. J.; Wang, Y.; Dong, J. C.; Zheng, X. S.; Zhang, J. T.; Chen, W. X. Engineering a metal-organic framework derived Mn-N4-CxSy atomic interface for highly efficient oxygen reduction reaction. Chem. Sci. 2020, 11, 5994–5999.

[20]

Shi, L.; Lin, X. N.; Liu, F.; Long, Y. D.; Cheng, R. Y.; Tan, C. H.; Yang, L.; Hu, C. G.; Zhao, S. L.; Liu, D. Geometrically deformed iron-based single-atom catalysts for high-performance acidic proton exchange membrane fuel cells. ACS Catal. 2022, 12, 5397–5406.

[21]

An, Z.; Li, H. Q.; Zhang, X. M.; Xu, X. L.; Xia, Z. X.; Yu, S. S.; Chu, W. L.; Wang, S. L.; Sun, G. Q. Structural evolution of a PtRh nanodendrite electrocatalyst and its ultrahigh durability toward oxygen reduction reaction. ACS Catal. 2022, 12, 3302–3308.

[22]

Yang, G. G.; Zhu, J. W.; Yuan, P. F.; Hu, Y. F.; Qu, G.; Lu, B. A.; Xue, X. Y.; Yin, H. B.; Cheng, W. Z.; Cheng, J. Q. et al. Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nat. Commun. 2021, 12, 1734.

[23]

Yu, D. S.; Ma, Y. C.; Hu, F.; Lin, C. C.; Li, L. L.; Chen, H. Y.; Han, X. P.; Peng, S. J. Dual-sites coordination engineering of single atom catalysts for flexible metal-air batteries. Adv. Energy Mater. 2021, 11, 2101242.

[24]

Wan, J. W.; Zhao, Z. H.; Shang, H. S.; Peng, B.; Chen, W. X.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Cao, R.; Sarangi, R. et al. In situ phosphatizing of triphenylphosphine encapsulated within metal-organic frameworks to design atomic Co1-P1N3 interfacial structure for promoting catalytic performance. J. Am. Chem. Soc. 2020, 142, 8431–8439.

[25]

Xu, W. J.; Tang, H.; Gu, H. F.; Xi, H. Y.; Wu, P. F.; Liang, B. L.; Liu, Q. Q.; Chen, W. X. Research progress of asymmetrically coordinated single-atom catalysts for electrocatalytic reactions. J. Mater. Chem. A 2022, 10, 14732–14746.

[26]

Wang, Y. L.; Shi, R.; Shang, L.; Waterhouse, G. I. N.; Zhao, J. Q.; Zhang, Q. H.; Gu, L.; Zhang, T. R. High-efficiency oxygen reduction to hydrogen peroxide catalyzed by nickel single-atom catalysts with tetradentate N2O2 coordination in a three-phase flow cell. Angew. Chem., Int. Ed. 2020, 59, 13057–13062.

[27]

Zhang, J. Q.; Zhao, Y. F.; Chen, C.; Huang, Y. C.; Dong, C. L.; Chen, C. J.; Liu, R. S.; Wang, C. Y.; Yan, K.; Li, Y. D. et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118–20126.

[28]

Wu, F.; Pan, C.; He, C. T.; Han, Y. H.; Ma, W. J.; Wei, H.; Ji, W. L.; Chen, W. X.; Mao, J. J.; Yu, P. et al. Single-atom Co-N4 electrocatalyst enabling four-electron oxygen reduction with enhanced hydrogen peroxide tolerance for selective sensing. J. Am. Chem. Soc. 2020, 142, 16861–16867.

[29]

Guan, Q. Q.; Zhu, C. W.; Lin, Y.; Vovk, E. I.; Zhou, X. H.; Yang, Y.; Yu, H. C.; Cao, L. N.; Wang, H. W.; Zhang, X. H. et al. Bimetallic monolayer catalyst breaks the activity-selectivity trade-off on metal particle size for efficient chemoselective hydrogenations. Nat. Catal. 2021, 4, 840–849.

[30]

Zhong, W. H.; Qiu, Y.; Shen, H. J.; Wang, X. J.; Yuan, J. Y.; Jia, C. Y.; Bi, S. W.; Jiang, J. Electronic spin moment As a catalytic descriptor for Fe single-atom catalysts supported on C2N. J. Am. Chem. Soc. 2021, 143, 4405–4413.

[31]

Zhou, Y.; Yu, Y. N.; Ma, D. S.; Foucher, A. C.; Xiong, L.; Zhang, J. H.; Stach, E. A.; Yue, Q.; Kang, Y. J. Atomic Fe dispersed hierarchical mesoporous Fe-N-C nanostructures for an efficient oxygen reduction reaction. ACS Catal. 2021, 11, 74–81.

[32]

Ismail, N.; Qin, F. J.; Fang, C. H.; Liu, D.; Liu, B. H.; Liu, X. Y.; Wu, Z. L.; Chen, Z.; Chen, W. X. Electrocatalytic acidic oxygen evolution reaction: From nanocrystals to single atoms. Aggregate 2021, 2, e106.

[33]

Shinde, S. S.; Lee, C. H.; Yu, J. Y.; Kim, D. H.; Lee, S. U.; Lee, J. H. Hierarchically designed 3D holey C2N aerogels as bifunctional oxygen electrodes for flexible and rechargeable Zn-air batteries. ACS Nano 2018, 12, 596–608.

[34]

Xu, J. T.; Mahmood, J.; Dou, Y. H.; Dou, S. X.; Li, F.; Dai, L. M.; Baek, J. B. 2D frameworks of C2N and C3N as new anode materials for lithium-ion batteries. Adv. Mater. 2017, 29, 1702007.

[35]

Zhang, J. Q.; Zhao, Y. F.; Guo, X.; Chen, C.; Dong, C. L.; Liu, R. S.; Han, C. P.; Li, Y. D.; Gogotsi, Y.; Wang, G. X. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 2018, 1, 985–992.

[36]

Lin, L.; Ni, Y. X.; Shang, L.; Sun, H. X.; Zhang, Q.; Zhang, W.; Yan, Z. H.; Zhao, Q.; Chen, J. Atomic-level modulation-induced electron redistribution in Co coordination polymers elucidates the oxygen reduction mechanism. ACS Catal. 2022, 12, 7531–7540.

[37]

Yin, H. B.; Yuan, P. F.; Lu, B. A.; Xia, H. C.; Guo, K.; Yang, G. G.; Qu, G.; Xue, D. P.; Hu, Y. F.; Cheng, J. Q. et al. Phosphorus-driven electron delocalization on edge-type FeN4 active sites for oxygen reduction in acid medium. ACS Catal. 2021, 11, 12754–12762.

[38]

Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

[39]

Xu, H. B.; Jia, H. X.; Li, H. Z.; Liu, J.; Gao, X. W.; Zhang, J. C.; Liu, M.; Sun, D. L.; Chou, S. L.; Fang, F. et al. Dual carbon-hosted Co-N3 enabling unusual reaction pathway for efficient oxygen reduction reaction. Appl. Catal. B:Environ. 2021, 297, 120390.

[40]

Min, Y.; Zhou, X.; Chen, J. J.; Chen, W. X.; Zhou, F. Y.; Wang, Z. Y.; Yang, J.; Xiong, C.; Wang, Y.; Li, F. T. et al. Integrating single-cobalt-site and electric field of boron nitride in dechlorination electrocatalysts by bioinspired design. Nat. Commun. 2021, 12, 303.

[41]

Sun, M. R.; Chen, C. L.; Wu, M. H.; Zhou, D. N.; Sun, Z. Y.; Fan, J. L.; Chen, W. X.; Li, Y. J. Rational design of Fe-N-C electrocatalysts for oxygen reduction reaction: From nanoparticles to single atoms. Nano Res. 2021, 15, 1753–1778.

[42]

Zhu, Y. P.; Li, J. J.; Chen, Y. B.; Zou, J.; Cheng, Q. Q.; Chen, C.; Hu, W. B.; Zou, L. L.; Zou, Z. Q.; Yang, B. et al. Switching the oxygen reduction reaction pathway via tailoring the electronic structure of FeN4/C catalysts. ACS Catal. 2021, 11, 13020–13027.

[43]

Zou, J.; Chen, C.; Chen, Y. B.; Zhu, Y. P.; Cheng, Q. Q.; Zou, L. L.; Zou, Z. Q.; Yang, H. Facile steam-etching approach to increase the active site density of an ordered porous Fe-N-C catalyst to boost oxygen reduction reaction. ACS Catal. 2022, 12, 4517–4525.

[44]

Noh, W. Y.; Mun, J.; Lee, Y.; Kim, E. M.; Kim, Y. K.; Kim, K. Y.; Jeong, H. Y.; Lee, J. H.; Song, H. K.; Lee, G. et al. Molecularly engineered carbon platform to anchor edge-hosted single-atomic M-N/C (M = Fe, Co, Ni, Cu) electrocatalysts of outstanding durability. ACS Catal. 2022, 12, 7994–8006.

[45]

Li, Y. Y.; Zhang, P. Y.; Wan, L. Y.; Zheng, Y. P.; Qu, X. M.; Zhang, H. K.; Wang, Y. S.; Zaghib, K.; Yuan, J. Y.; Sun, S. H. et al. A general carboxylate-assisted approach to boost the ORR performance of ZIF-derived Fe/N/C catalysts for proton exchange membrane fuel cells. Adv. Funct. Mater. 2021, 31, 2009645.

[46]

Guo, J. N.; Li, B. J.; Zhang, Q. Y.; Liu, Q. T.; Wang, Z. L.; Zhao, Y. F.; Shui, J. L.; Xiang, Z. H. Highly accessible atomically dispersed Fe-Nx sites electrocatalyst for proton-exchange membrane fuel cell. Adv. Sci. 2021, 8, 2002249.

[47]

Zhang, Q. R.; Kumar, P.; Zhu, X. F.; Daiyan, R.; Bedford, N. M.; Wu, K. H.; Han, Z. J.; Zhang, T. R.; Amal, R.; Lu, X. Y. Electronically modified atomic sites within a multicomponent Co/Cu composite for efficient oxygen electroreduction. Adv. Energy Mater. 2021, 11, 2100303.

Nano Research
Pages 2294-2301
Cite this article:
Xu W, Sun Y, Zhou J, et al. Coordinatively unsaturated single Co atoms immobilized on C2N for efficient oxygen reduction reaction. Nano Research, 2023, 16(2): 2294-2301. https://doi.org/10.1007/s12274-022-5212-7
Topics:

6850

Views

9

Crossref

8

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 09 September 2022
Revised: 12 October 2022
Accepted: 15 October 2022
Published: 23 November 2022
© Tsinghua University Press 2022
Return