Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Plasmonic nanoparticles are endowed profound capability for sensing, biomedicine, and cancer therapy. However, the inaccessibly adjustable wavelength in near infrared (NIR) region window and size limit for the particles penetration in tumor strongly hinder their developments. Miniature gold nanorods (mini-Au NRs) with diameter less than 12 nm can effectively address this challenge due to the tiny size and tailorable NIR absorption. Herein, we adopt ternary surfactants (hexadecyl trimethyl ammonium bromide (CTAB), sodium oleate (NaOL), and sodium salicylate (NaSal)) mediated growth strategy to precisely synthesize miniature Au NRs under micelle space-confinement. Importantly, the selectively dense accumulation of ternary surfactants can efficiently improve the micellar stacking parameters (p) and lower micellar free energy (F), further tends to achieve the formation of Au NRs with tiny diameter and high purity. Compared with that of conventional methods, the purity of mini-Au NRs up to 100% can be dramatically improved via varying the relative concentration of ternary surfactants. The diameter of Au NRs can be dynamically controlled to 6, 8, and 11 nm through regulating the concentration of silver nitrate and the mole ratio of ternary surfactants. Such ternary surfactants system is favorable for the aging of tiny Au NRs, and further enables the aspect ratio-tunable in the region from 2.70 to 7.32, as well as tailorable plasmonic wavelength in wide NIR window from 700 to 1,147 nm. Therefore, our findings shed a light on the precise preparation of small sized plasmonic nanoparticles and pave the way to applications in biomedicine, imaging, and cancer therapy.
Zheng, J. P.; Cheng, X. Z.; Zhang, H.; Bai, X. P.; Ai, R. Q.; Shao, L.; Wang, J. F. Gold nanorods: The most versatile plasmonic nanoparticles. Chem. Rev. 2021, 121, 13342–13453.
González-Rubio, G.; Díaz-Núñez, P.; Rivera, A.; Prada, A.; Tardajos, G.; González-Izquierdo, J.; Bañares, L.; Llombart, P.; Macdowell, L. G.; Palafox, M. A. et al. Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances. Science 2017, 358, 640–644.
Li, M.; Ding, C. P.; Jia, P. D.; Guo, L. H.; Wang, S.; Guo, Z. Y.; Su, F. M.; Huang, Y. J. Semi-quantitative detection of p-aminophenol in real samples with colorfully naked-eye assay. Sens. Actuators B: Chem. 2021, 334, 129604.
Song, L. P.; Chen, J.; Xu, B. B.; Huang, Y. J. Flexible plasmonic biosensors for healthcare monitoring: Progress and prospects. ACS Nano 2021, 15, 18822–18847.
Li, X. S.; Lovell, J. F.; Yoon, J.; Chen, X. Y. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657–674.
Jia, P. D.; Ding, C. P.; Sun, Z. W.; Song, L. P.; Zhang, D.; Yan, Z. J.; Zhang, Z. L.; Su, F. M.; Mostafa, A. A.; Huang, Y. J. DNA precisely regulated Au nanorods/Ag2S quantum dots satellite structure for ultrasensitive detection of prostate cancer biomarker. Sens. Actuators B: Chem. 2021, 347, 130585.
Jin, L. J.; Shen, S.; Huang, Y. J.; Li, D. D.; Yang, X. Z. Corn-like Au/Ag nanorod-mediated NIR-II photothermal/photodynamic therapy potentiates immune checkpoint antibody efficacy by reprogramming the cold tumor microenvironment. Biomaterials 2021, 268, 120582.
Song, L. P.; Xu, B. B.; Cheng, Q.; Wang, X. Y.; Luo, X. N.; Chen, X.; Chen, T.; Huang, Y. J. Instant interfacial self-assembly for homogeneous nanoparticle monolayer enabled conformal “lift-on” thin film technology. Sci. Adv. 2021, 7, eabk2852.
Irvine, D. J.; Dane, E. L. Enhancing cancer immunotherapy with nanomedicine. Nat. Rev. Immunol. 2020, 20, 321–334.
van der Meel, R.; Sulheim, E.; Shi, Y.; Kiessling, F.; Mulder, W. J. M.; Lammers, T. Smart cancer nanomedicine. Nat. Nanotechnol. 2019, 14, 1007–1017.
Song, L. P.; Qiu, N. X.; Huang, Y. J.; Cheng, Q.; Yang, Y. P.; Lin, H.; Su, F. M.; Chen, T. Macroscopic orientational gold nanorods monolayer film with excellent photothermal anticounterfeiting performance. Adv. Opt. Mater. 2020, 8, 1902082.
Chen, H. J.; Shao, L.; Ming, T.; Sun, Z. H.; Zhao, C. M.; Yang, B. C.; Wang, J. F. Understanding the photothermal conversion efficiency of gold nanocrystals. Small 2010, 6, 2272–2280.
Chen, Y. S.; Zhao, Y.; Yoon, S. J.; Gambhir, S. S.; Emelianov, S. Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window. Nat. Nanotechnol. 2019, 14, 465–472.
Huang, X. H.; Neretina, S.; El-Sayed, M. A. Gold nanorods: From synthesis and properties to biological and biomedical applications. Adv. Mater. 2009, 21, 4880–4910.
Lai, J. P.; Zhang, L.; Niu, W. X.; Qi, W. J.; Zhao, J. M.; Liu, Z. Y.; Zhang, W.; Xu, G. B. One-pot synthesis of gold nanorods using binary surfactant systems with improved monodispersity, dimensional tunability and plasmon resonance scattering properties. Nanotechnology 2014, 25, 125601.
Lyu, Y.; Li, J. C.; Pu, K. Y. Second near-infrared absorbing agents for photoacoustic imaging and photothermal therapy. Small Methods 2019, 3, 1900553.
Lu, S. Y.; Xue, L. R.; Yang, M.; Wang, J. J.; Li, Y.; Jiang, Y. X.; Hong, X. C.; Wu, M. F.; Xiao, Y. L. NIR-II fluorescence/photoacoustic imaging of ovarian cancer and peritoneal metastasis. Nano Res. 2022, 15, 9183–9191.
Cai, K.; Zhang, W. Y.; Foda, M. F.; Li, X. Y.; Zhang, J.; Zhong, Y. T.; Liang, H. G.; Li, H. Q.; Han, H. Y.; Zhai, T. Y. Miniature hollow gold nanorods with enhanced effect for in vivo photoacoustic imaging in the NIR-II window. Small 2020, 16, 2002748.
Yang, X.; Chen, Y. H.; Zhang, X.; Xue, P.; Lv, P. F.; Yang, Y. Z.; Wang, L.; Feng, W. Bioinspired light-fueled water-walking soft robots based on liquid crystal network actuators with polymerizable miniaturized gold nanorods. Nano Today 2022, 43, 101419.
Du, Y. Y.; Han, M. D.; Cao, K. X.; Li, Q.; Pang, J. X.; Dou, L. P.; Liu, S. J.; Shi, Z.; Yan, F.; Feng, S. H. Gold nanorods exhibit intrinsic therapeutic activity via controlling N6-methyladenosine-based epitranscriptomics in acute myeloid leukemia. ACS Nano 2021, 15, 17689–17704.
Kim, F.; Song, J. H.; Yang, P. D. Photochemical synthesis of gold nanorods. J. Am. Chem. Soc. 2002, 124, 14316–14317.
Abdelmoti, L. G.; Zamborini, F. P. Potential-controlled electrochemical seed-mediated growth of gold nanorods directly on electrode surfaces. Langmuir 2010, 26, 13511–13521.
Lohse, S. E.; Eller, J. R.; Sivapalan, S. T.; Plews, M. R.; Murphy, C. J. A simple millifluidic benchtop reactor system for the high-throughput synthesis and functionalization of gold nanoparticles with different sizes and shapes. ACS Nano 2013, 7, 4135–4150.
Wang, Y. D.; Abb, M.; Boden, S. A.; Aizpurua, J.; de Groot, C. H.; Muskens, O. L. Ultrafast nonlinear control of progressively loaded, single plasmonic nanoantennas fabricated using helium ion milling. Nano Lett. 2013, 13, 5647–5653.
Ali, M. R. K.; Snyder, B.; El-Sayed, M. A. Synthesis and optical properties of small Au nanorods using a seedless growth technique. Langmuir 2012, 28, 9807–9815.
Ali, M. R. K.; Rahman, M. A.; Wu, Y.; Han, T. G.; Peng, X. H.; Mackey, M. A.; Wang, D. S.; Shin, H. J.; Chen, Z. G.; Xiao, H. P. et al. Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice. Proc. Natl. Acad. Sci. USA 2017, 114, E3110–E3118.
Shibu, E. S.; Varkentina, N.; Cognet, L.; Lounis, B. Small gold nanorods with tunable absorption for photothermal microscopy in cells. Adv. Sci. 2017, 4, 1600280.
Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.
Chang, H. H.; Murphy, C. J. Mini gold nanorods with tunable plasmonic peaks beyond 1000 nm. Chem. Mater. 2018, 30, 1427–1435.
Vigderman, L.; Zubarev, E. R. High-yield synthesis of gold nanorods with longitudinal SPR peak greater than 1200 nm using hydroquinone as a reducing agent. Chem. Mater. 2013, 25, 1450–1457.
Jia, H. L.; Fang, C. H.; Zhu, X. M.; Ruan, Q. F.; Wang, Y. X. J.; Wang, J. F. Synthesis of absorption-dominant small gold nanorods and their plasmonic properties. Langmuir 2015, 31, 7418–7426.
Dai, L. W.; Song, L. P.; Huang, Y. J.; Zhang, L.; Lu, X. F.; Zhang, J. W.; Chen, T. Bimetallic Au/Ag core–shell superstructures with tunable surface plasmon resonance in the near-infrared region and high performance surface-enhanced Raman scattering. Langmuir 2017, 33, 5378–5384.
Zhuo, X. L.; Mychinko, M.; Heyvaert, W.; Larios, D.; Obelleiro-Liz, M.; Taboada, J. M.; Bals, S.; Liz-Marzan, L. M. Morphological and optical transitions during micelle-seeded chiral growth on gold nanorods. ACS Nano 2022, 16, 19281–19292.
Bakshi, M. S. How surfactants control crystal growth of nanomaterials. Cryst. Growth Des. 2016, 16, 1104–1133.
Johnson, C. J.; Dujardin, E.; Davis, S. A.; Murphy, C. J.; Mann, S. Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J. Mater. Chem. 2002, 12, 1765–1770.
Sau, T. K.; Murphy, C. J. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 2004, 20, 6414–6420.
Gallagher, R.; Zhang, X.; Altomare, A.; Lawrence, D.; Shawver, N.; Tran, N.; Beazley, M.; Chen, G. pH-mediated synthesis of monodisperse gold nanorods with quantitative yield and molecular level insight. Nano Res. 2021, 14, 1167–1174.
Ye, X. C.; Jin, L. H.; Caglayan, H.; Chen, J.; Xing, G. Z.; Zheng, C.; Doan-Nguyen, V.; Kang, Y. J.; Engheta, N.; Kagan, C. R. et al. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano 2012, 6, 2804–2817.
Ye, X. C.; Zheng, C.; Chen, J.; Gao, Y. Z.; Murray, C. B. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett. 2013, 13, 765–771.
Murphy, C. J.; Thompson, L. B.; Chernak, D. J.; Yang, J. A.; Sivapalan, S. T.; Boulos, S. P.; Huang, J. Y.; Alkilany, A. M.; Sisco, P. N. Gold nanorod crystal growth: From seed-mediated synthesis to nanoscale sculpting. Curr. Opin. Colloid Interface Sci. 2011, 16, 128–134.
Lutz-Bueno, V.; Isabettini, S.; Walker, F.; Kuster, S.; Liebi, M.; Fischer, P. Ionic micelles and aromatic additives: A closer look at the molecular packing parameter. Phys. Chem. Chem. Phys. 2017, 19, 21869–21877.
Aswal, V. K.; Goyal, P. S.; Thiyagarajan, P. Small-angle neutron-scattering and viscosity studies of CTAB/NaSal viscoelastic micellar solutions. J. Phys. Chem. B 1998, 102, 2469–2473.
Yoo, H.; Sharma, J.; Yeh, H. C.; Martinez, J. S. Solution-phase synthesis of Au fibers using rod-shaped micelles as shape directing agents. Chem. Commun. 2010, 46, 6813–6815.
Zhang, X.; Gallagher, R.; He, D.; Chen, G. pH regulated synthesis of monodisperse penta-twinned gold nanoparticles with high yield. Chem. Mater. 2020, 32, 5626–5633.
Khan, Z.; Singh, T.; Hussain, J. I.; Hashmi, A. A. Au(III)-CTAB reduction by ascorbic acid: Preparation and characterization of gold nanoparticles. Colloids Surf. B: Biointerfaces 2013, 104, 11–17.
Liopo, A.; Wang, S. W.; Derry, P. J.; Oraevsky, A. A.; Zubarev, E. R. Seedless synthesis of gold nanorods using dopamine as a reducing agent. RSC Adv. 2015, 5, 91587–91593.
Tu, Y. J.; Njus, D.; Schlegel, H. B. A theoretical study of ascorbic acid oxidation and HOO·/O2·− radical scavenging. Org. Biomol. Chem. 2017, 15, 4417–4431.
Koeppl, S.; Ghielmetti, N.; Caseri, W.; Spolenak, R. Seed-mediated synthesis of gold nanorods: Control of the aspect ratio by variation of the reducing agent. J. Nanopart. Res. 2013, 15, 1471.
Su, G. X.; Yang, C.; Zhu, J. J. Fabrication of gold nanorods with tunable longitudinal surface plasmon resonance peaks by reductive dopamine. Langmuir 2015, 31, 817–823.
Liu, K.; Bu, Y. R.; Zheng, Y. H.; Jiang, X. C.; Yu, A. B.; Wang, H. T. Seedless synthesis of monodispersed gold nanorods with remarkably high yield: Synergistic effect of template modification and growth kinetics regulation. Chem.—Eur. J. 2017, 23, 3291–3299.
Hong, H. G.; Park, W. Electrochemical characteristics of hydroquinone-terminated self-assembled monolayers on gold. Langmuir 2001, 17, 2485–2492.
Lohse, S. E.; Murphy, C. J. The quest for shape control: A history of gold nanorod synthesis. Chem. Mater. 2013, 25, 1250–1261.
Walsh, M. J.; Tong, W. M.; Katz-Boon, H.; Mulvaney, P.; Etheridge, J.; Funston, A. M. A mechanism for symmetry breaking and shape control in single-crystal gold nanorods. Acc. Chem. Res. 2017, 50, 2925–2935.
Grzelczak, M.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L. M. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 2008, 37, 1783–1791.
Lohse, S. E.; Burrows, N. D.; Scarabelli, L.; Liz-Marzán, L. M.; Murphy, C. J. Anisotropic noble metal nanocrystal growth: The role of halides. Chem. Mater. 2014, 26, 34–43.
Wang, Z. W.; Larson, R. G. Molecular dynamics simulations of threadlike cetyltrimethylammonium chloride micelles: Effects of sodium chloride and sodium salicylate salts. J. Phys. Chem. B 2009, 113, 13697–13710.
Yong, K. T.; Sahoo, Y.; Swihart, M. T.; Schneeberger, P. M.; Prasad, P. N. Templated synthesis of gold nanorods (NRs): The effects of cosurfactants and electrolytes on the shape and optical properties. Top. Catal. 2008, 47, 49–60.
Pekkari, A.; Wen, X.; Orrego-Hernández, J.; da Silva, R. R.; Kondo, S.; Olsson, E.; Härelind, H.; Moth-Poulsen, K. Synthesis of highly monodisperse Pd nanoparticles using a binary surfactant combination and sodium oleate as a reductant. Nanoscale Adv. 2021, 3, 2481–2487.