AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Brightening thiocyanate-anion layered perovskite through internal stress modulated nano phase segregation

Yiming Li1,3,§Jiangjian Shi1,§( )Huijue Wu1Yanhong Luo1,4Dongmei Li1,4( )Qingbo Meng1,2,4( )
Key Laboratory for Renewable Energy, Chinese Academy of Sciences; Beijing Key Laboratory for New Energy Materials and Devices; Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Huairou Division, Institute of Physics, Chinese Academy of Sciences, Beijing 101400, China
Songshan Lake Materials Laboratory, Dongguan 523808, China

§ Yiming Li and Jiangjian Shi contributed equally to this work.

Show Author Information

Graphical Abstract

Luminescence limit of the thiocyanate (SCN)-based layered perovskite is overcome by introducing and controlling nano phase structures within the two-dimensional (2D) framework. Photoluminescence quantum yield of ~ 45% can be obtained, demonstrating a lucrative candidate for light-emitting devices through phase controls within nano scale.

Abstract

Thiocyanate-anion (SCN) two-dimensional (2D) layered perovskite with internal stress-controlled nano phase segregation has been firstly demonstrated as a promising material system for luminescence applications. An interesting energy band structure is found as well as charge transfer process caused by nano phase segregation, which provide an alternative route to overcome the indirect-bandgap luminescence limit of SCN layered perovskites. It is revealed that, within the SCN layered framework, the segregated nano phases exist in a quantum well form, possessing much higher carrier localization and second-order radiative recombination abilities. With the help of internal stress modulation, these advantages can be significantly enhanced and finally contribute to high luminescence performances in visible-red regions. This work provides more potential opportunities for 2D layered perovskite materials in the future optoelectronic applications.

Electronic Supplementary Material

Download File(s)
12274_2022_5217_MOESM1_ESM.pdf (518.6 KB)

References

[1]

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

[2]

Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647.

[3]

Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.

[4]

Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotech. 2014, 9, 687–692.

[5]

Stranks, S. D.; Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotech. 2015, 10, 391–402.

[6]

Veldhuis, S. A.; Boix, P. P.; Yantara, N.; Li, M. J.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G. Perovskite materials for light-emitting diodes and lasers. Adv. Mater. 2016, 28, 6804–6834.

[7]

Yamada, Y.; Nakamura, T.; Endo, M.; Wakamiya, A.; Kanemitsu, Y. Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. J. Am. Chem. Soc. 2014, 136, 11610–11613.

[8]

Stranks, S. D.; Burlakov, V. M.; Leijtens, T.; Ball, J. M.; Goriely, A.; Snaith, H. J. Recombination kinetics in organic-inorganic perovskites: Excitons, free charge, and subgap states. Phys. Rev. Appl. 2014, 2, 034007.

[9]

Cho, H.; Jeong, S. H.; Park, M. H.; Kim, Y. H.; Wolf, C.; Lee, C. L.; Heo, J. H.; Sadhanala, A.; Myoung, N.; Yoo, S. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 2015, 350, 1222–1225.

[10]

Xiao, Z. G.; Kerner, R. A.; Zhao, L. F.; Tran, N. L.; Lee, K. M.; Koh, T. W.; Scholes, G. D.; Rand, B. P. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photonics 2017, 11, 108–115.

[11]

Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.

[12]

Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 2016, 354, 92–95.

[13]

Byun, J.; Cho, H.; Wolf, C.; Jang, M.; Sadhanala, A.; Friend, R. H.; Yang, H.; Lee, T. W. Efficient visible quasi-2D perovskite light-emitting diodes. Adv. Mater. 2016, 28, 7515–7520.

[14]

Zou, W.; Li, R. Z.; Zhang, S. T.; Liu, Y. L.; Wang, N. N.; Cao, Y.; Miao, Y. F.; Xu, M. M.; Guo, Q.; Di, D. W. et al. Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. Nat. Commun. 2018, 9, 608.

[15]

Xing, G. C.; Wu, B.; Wu, X. Y.; Li, M. J.; Du, B.; Wei, Q.; Guo, J.; Yeow, E. K. L.; Sum, T. C.; Huang, W. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun. 2017, 8, 14558.

[16]

Yu, M. T.; Yi, C.; Wang, N. N.; Zhang, L. D.; Zou, R. M.; Tong, Y. F.; Chen, H.; Cao, Y.; He, Y. R.; Wang, Y. et al. Control of barrier width in perovskite multiple quantum wells for high performance green light-emitting diodes. Adv. Opt. Mater. 2019, 7, 1801575.

[17]

Li, Y.; Milić, J. V.; Ummadisingu, A.; Seo, J. Y.; Im, J. H.; Kim, H. S.; Liu, Y. H.; Dar, M. I.; Zakeeruddin, S. M.; Wang, P. et al. Bifunctional organic spacers for formamidinium-based hybrid Dion-Jacobson two-dimensional perovskite solar cells. Nano Lett. 2019, 19, 150–157.

[18]

Ahmad, S.; Fu, P.; Yu, S. W.; Yang, Q.; Liu, X.; Wang, X. C.; Wang, X. L.; Guo, X.; Li, C. Dion-Jacobson phase 2D layered perovskites for solar cells with ultrahigh stability. Joule 2019, 3, 794–806.

[19]

Liu, J. Y.; Shi, J. J.; Li, D. M.; Zhang, F.; Li, X. G.; Xiao, Y.; Wang, S. R. Molecular design and photovoltaic performance of a novel thiocyanate-based layered organometal perovskite material. Synth. Met. 2016, 215, 56–63.

[20]

Daub, M.; Hillebrecht, H. Synthesis, single-crystal structure and characterization of (CH3NH3)2Pb(SCN)2I2. Angew. Chem., Int. Ed. 2015, 54, 11016–11017.

[21]

Xiao, Z. W.; Meng, W. W.; Saparov, B.; Duan, H. S.; Wang, C. L.; Feng, C. B.; Liao, W. Q.; Ke, W. J.; Zhao, D. W.; Wang, J. B. et al. Photovoltaic properties of two-dimensional (CH3NH3)2Pb(SCN)2I2 perovskite: A combined experimental and density functional theory study. J. Phys. Chem. Lett. 2016, 7, 1213–1218.

[22]

Tang, G.; Yang, C.; Stroppa, A.; Fang, D. N.; Hong, J. W. Revealing the role of thiocyanate anion in layered hybrid halide perovskite (CH3NH3)2Pb(SCN)2I2. J. Chem. Phys. 2017, 146, 224702.

[23]

Penagos, J. I. C.; Romero, E. R.; Gordillo, G.; Hoyos, J. M. C.; Sánchez, M. A. R. On the true band gap of the (CH3NH3)2Pb(SCN)2I2 hybrid perovskite: An interesting solar-cell material. Phys. Status Solidi (RRL)-Rapid Res. Lett. 2018, 12, 1700376.

[24]

Li, Y. M.; Li, Y. S.; Shi, J. J.; Zhang, H. Y.; Wu, J. H.; Li, D. M.; Luo, Y. H.; Wu, H. J.; Meng, Q. B. High quality perovskite crystals for efficient film photodetectors induced by hydrolytic insulating oxide substrates. Adv. Funct. Mater. 2018, 28, 1705220.

[25]

Leroux, M.; Grandjean, N.; Beaumont, B.; Nataf, G.; Semond, F.; Massies, J.; Gibart, P. Temperature quenching of photoluminescence intensities in undoped and doped GaN. J. Appl. Phys. 1999, 86, 3721–3728.

[26]

Younts, R.; Duan, H. S.; Gautam, B.; Saparov, B.; Liu, J.; Mongin, C.; Castellano, F. N.; Mitzi, D. B.; Gundogdu, K. Efficient generation of long-lived triplet excitons in 2D hybrid perovskite. Adv. Mater. 2017, 29, 1604278.

[27]

Sajoto, T.; Djurovich, P. I.; Tamayo, A. B.; Oxgaard, J.; Goddard, W. A.; Thompson, M. E. Temperature dependence of blue phosphorescent cyclometalated Ir(III) complexes. J. Am. Chem. Soc. 2009, 131, 9813–9822.

[28]

Mao, L. L.; Wu, Y. L.; Stoumpos, C. C.; Wasielewski, M. R.; Kanatzidis, M. G. White-light emission and structural distortion in new corrugated two-dimensional lead bromide perovskites. J. Am. Chem. Soc. 2017, 139, 5210–5215.

[29]

Hu, T.; Smith, M. D.; Dohner, E. R.; Sher, M. J.; Wu, X. X.; Trinh, M. T.; Fisher, A.; Corbett, J.; Zhu, X. Y.; Karunadasa, H. I. et al. Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites. J. Phys. Chem. Lett. 2016, 7, 2258–2263.

[30]

Halder, A.; Chulliyil, R.; Subbiah, A. S.; Khan, T.; Chattoraj, S.; Chowdhury, A.; Sarkar, S. K. Pseudohalide (SCN)-doped MAPbI3 perovskites: A few surprises. J. Phys. Chem. Lett. 2015, 6, 3483–3489.

[31]

’t Hooft, G. W.; van Opdorp, C. Temperature dependence of interface recombination and radiative recombination in (Al, Ga)As heterostructures. Appl. Phys. Lett. 1983, 42, 813–815.

[32]

Siebrand, W. Radiationless transitions in polyatomic molecules. II. Triplet-ground-state transitions in aromatic hydrocarbons. J. Chem. Phys. 1967, 47, 2411–2422.

[33]
Song, K. S.; Williams, R. T. Self-Trapped Excitons; Springer-Verlag: Berlin, Heidelberg, 1993.
[34]

Rosales, D.; Bretagnon, T.; Gil, B.; Kahouli, A.; Brault, J.; Damilano, B.; Massies, J.; Durnev, M. V.; Kavokin, A. V. Excitons in nitride heterostructures: From zero- to one-dimensional behavior. Phys. Rev. B 2013, 88, 125437.

[35]

Gan, L.; He, H. P.; Li, S. X.; Li, J.; Ye, Z. Z. Distinctive excitonic recombination in solution-processed layered organic-inorganic hybrid two-dimensional perovskites. J. Mater. Chem. C 2016, 4, 10198–10204.

[36]

Fang, H. H.; Protesescu, L.; Balazs, D. M.; Adjokatse, S.; Kovalenko, M. V.; Loi, M. A. Exciton recombination in formamidinium lead triiodide: Nanocrystals versus thin films. Small. 2017, 13, 1700673.

[37]

Umeyama, D.; Lin, Y.; Karunadasa, H. I. Red-to-black piezochromism in a compressible Pb-I-SCN layered perovskite. Chem. Mater. 2016, 28, 3241–3244.

[38]

Karczewski, G.; Maćkowski, S.; Kutrowski, M.; Wojtowicz, T.; Kossut, J. Photoluminescence study of CdTe/ZnTe self-assembled quantum dots. Appl. Phys. Lett. 1999, 74, 3011–3013.

[39]

Le Ru, E. C.; Fack, J.; Murray, R. Temperature and excitation density dependence of the photoluminescence from annealed InAs/GaAs quantum dots. Phys. Rev. B 2003, 67, 245318.

[40]

Yuan, M. J.; Quan, L. N.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y. B.; Beauregard, E. M.; Kanjanaboos, P. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 2016, 11, 872–877.

[41]

Zhang, S. T.; Yi, C.; Wang, N. N.; Sun, Y.; Zou, W.; Wei, Y. Q.; Cao, Y.; Miao, Y. F.; Li, R. Z.; Yin, Y. et al. Efficient red perovskite light-emitting diodes based on solution-processed multiple quantum wells. Adv. Mater. 2017, 29, 1606600.

[42]

Wang, N. N.; Cheng, L.; Ge, R.; Zhang, S. T.; Miao, Y. F.; Zou, W.; Yi, C.; Sun, Y.; Cao, Y.; Yang, R. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 2016, 10, 699–704.

Nano Research
Pages 5533-5540
Cite this article:
Li Y, Shi J, Wu H, et al. Brightening thiocyanate-anion layered perovskite through internal stress modulated nano phase segregation. Nano Research, 2023, 16(4): 5533-5540. https://doi.org/10.1007/s12274-022-5217-2
Topics:

11560

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 04 August 2022
Revised: 04 August 2022
Accepted: 17 October 2022
Published: 12 November 2022
© Tsinghua University Press 2022
Return