AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Critical evaluation of the glucose oxidase-like activity of gold nanoparticles stabilized by different polymers

Lili Xu1,2Jinxing Chen1,2Qian Ma1,2Daiyong Chao1,3Xinyang Zhu1,2Ling Liu1Jin Wang4Youxing Fang1( )Shaojun Dong1,2( )
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
University of Science and Technology of China, Hefei 230026, China
College of Chemistry, Jilin University, Changchun 130012, China
Department of Chemistry and Physics, Stony Brook University, Stony Brook, NY11794, USA
Show Author Information

Graphical Abstract

The comprehensive evaluation of the glucose oxidase-like activity of Au nanoparticles with different polymer stabilizers shows the pros and cons of Au nanoparticles for biocatalysis and can facilitate rational utilizations of polymer-stabilized Au biocatalysts.

Abstract

Polymer stabilizers are widely used to synthesize gold nanoparticles (Au NPs) to prevent their aggregation and improve their stability. Although stabilizers are known to greatly influence both the structure and size of Au NPs, limited efforts explore their effects on the activity of Au NPs for biocatalysis. Herein, different polymers are used as stabilizers to synthesize Au NPs. For the glucose oxidase-like activity, we find that without the spatial barrier from stabilizers, naked Au NPs show significantly high catalytic activity as well as the worst stability. Among the polymers, polyacrylic acid-stabilized Au NPs exhibit the highest activity, whose Vmax (0.74 μM·s−1) is higher than that of the natural glucose oxidase (0.37 μM·s−1) due to the smallest particle size (< 2 nm) and the weak spatial resistance of polyacrylic acid. These variable catalytic results derive from the comprehensive effects including size, steric hindrance, and electronic effect. However, further selectivity and activity tests have exposed shortcomings. They possess universal activities for aldose oxidation, whereas cannot retain activities in typical physiological environments. Our findings highlight the role of polymer stabilizers in imposing effects on the glucose oxidase-like activity of Au NPs and provide a basis for further Au NPs engineering and applications.

Electronic Supplementary Material

Download File(s)
12274_2022_5218_MOESM1_ESM.pdf (1.5 MB)

References

[1]

Buonerba, A.; Grassi, A. Trends in sustainable synthesis of organics by gold nanoparticles embedded in polymer matrices. Catalysts 2021, 11, 714.

[2]

Mikami, Y.; Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Catalytic activity of unsupported gold nanoparticles. Catal. Sci. Technol. 2013, 3, 58–69.

[3]

Tsukuda, T.; Tsunoyama, H.; Sakurai, H. Aerobic oxidations catalyzed by colloidal nanogold. Chem. Asian J. 2011, 6, 736–748.

[4]

Tongsakul, D.; Nishimura, S.; Ebitani, K. Effect of stabilizing polymers on catalysis of hydrotalcite-supported platinum nanoparticles for aerobic oxidation of 1,2-propanediol in aqueous solution at room temperature. J. Phys. Chem. C 2014, 118, 11723–11730.

[5]

Chavda, N.; Trivedi, A.; Thakarda, J.; Agrawal, Y. K.; Maity, P. Size specific activity of polymer stabilized gold nanoparticles for transfer hydrogenation catalysis. Catal. Lett. 2016, 146, 1331–1339.

[6]

Takale, B. S.; Bao, M.; Yamamoto, Y. Gold nanoparticle (AuNPs) and gold nanopore (AuNPore) catalysts in organic synthesis. Org. Biomol. Chem. 2014, 12, 2005–2027.

[7]

Saldan, I.; Dobrovetska, O.; Sus, L.; Makota, O.; Pereviznyk, O.; Kuntyi, O.; Reshetnyak, O. Electrochemical synthesis and properties of gold nanomaterials. J. Solid State Electrochem. 2018, 22, 637–656.

[8]

Hayashi, S.; Ishida, R.; Hasegawa, S.; Yamazoe, S.; Tsukuda, T. Doping a single palladium atom into gold superatoms stabilized by PVP: Emergence of hydrogenation catalysis. Top. Catal. 2018, 61, 136–141.

[9]

Hasegawa, S.; Takano, S.; Harano, K.; Tsukuda, T. New magic Au24 cluster stabilized by PVP: Selective formation, atomic structure, and oxidation catalysis. JACS Au 2021, 1, 660–668.

[10]

Wu, P. P.; Bai, P.; Yan, Z. F.; Zhao, G. X. S. Gold nanoparticles supported on mesoporous silica: Origin of high activity and role of Au NPs in selective oxidation of cyclohexane. Sci. Rep. 2016, 6, 18817.

[11]

Hasegawa, S.; Takano, S.; Yamazoe, S.; Tsukuda, T. Prominent hydrogenation catalysis of a PVP-stabilized Au34 superatom provided by doping a single Rh atom. Chem. Commun. 2018, 54, 5915–5918.

[12]

Tsunoyama, H.; Sakurai, H.; Ichikuni, N.; Negishi, Y.; Tsukuda, T. Colloidal gold nanoparticles as catalyst for carbon–carbon bond formation: Application to aerobic homocoupling of phenylboronic acid in water. Langmuir 2004, 20, 11293–11296.

[13]

Zheng, K. Y.; Setyawati, M. I.; Leong, D. T.; Xie, J. P. Overcoming bacterial physical defenses with molecule-like ultrasmall antimicrobial gold nanoclusters. Bioact. Mater. 2021, 6, 941–950.

[14]

Dutta, A.; Paul, A.; Chattopadhyay, A. The effect of temperature on the aggregation kinetics of partially bare gold nanoparticles. RSC Adv. 2016, 6, 82138–82149.

[15]

Jiang, G. M.; Huang, Y. X.; Zhang, S.; Zhu, H. Y.; Wu, Z. B.; Sun, S. H. Controlled synthesis of Au-Fe heterodimer nanoparticles and their conversion into Au-Fe3O4 heterostructured nanoparticles. Nanoscale 2016, 8, 17947–17952.

[16]

Liu, J. X.; Qiao, B. T.; Song, Y. A.; Huang, Y. D.; Liu, J. Y. Hetero-epitaxially anchoring Au nanoparticles onto ZnO nanowires for CO oxidation. Chem. Commun. 2015, 51, 15332–15335.

[17]

Okatsu, H.; Kinoshita, N.; Akita, T.; Ishida, T.; Haruta, M. Deposition of gold nanoparticles on carbons for aerobic glucose oxidation. Appl. Catal. A:Gen. 2009, 369, 8–14.

[18]

Li, Y.; Lan, J. Y.; Liu, J. J.; Yu, J. F.; Luo, Z. P.; Wang, W. X.; Sun, L. Y. Synthesis of gold nanoparticles on rice husk silica for catalysis applications. Ind. Eng. Chem. Res. 2015, 54, 5656–5663.

[19]

Turner, M.; Golovko, V. B.; Vaughan, O. P. H.; Abdulkin, P.; Berenguer-Murcia, A.; Tikhov, M. S.; Johnson, B. F. G.; Lambert, R. M. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 2008, 454, 981–983.

[20]

Campisi, S.; Schiavoni, M.; Chan-Thaw, C. E.; Villa, A. Untangling the role of the capping agent in nanocatalysis: Recent advances and perspectives. Catalysts 2016, 6, 185.

[21]

Imura, Y.; Maniwa, M.; Iida, K.; Saito, H.; Morita-Imura, C.; Kawai, T. Preparing alumina-supported gold nanowires for alcohol oxidation. ACS Omega 2021, 6, 16043–16048.

[22]

Zhang, B. H.; Wu, Z. N.; Cao, Y. T.; Yao, Q. F.; Xie, J. P. Ultrastable hydrophilic gold nanoclusters protected by sulfonic thiolate ligands. J. Phys. Chem. C 2021, 125, 489–497.

[23]

Kanaoka, S.; Yagi, N.; Fukuyama, Y.; Aoshima, S.; Tsunoyama, H.; Tsukuda, T.; Sakurai, H. Thermosensitive gold nanoclusters stabilized by well-defined vinyl ether star polymers: Reusable and durable catalysts for aerobic alcohol oxidation. J. Am. Chem. Soc. 2007, 129, 12060–12061.

[24]

Agrawal, B.; Patel, J.; Dave, P.; Thakarda, J.; Anand, T. S.; Maity, P. Efficient synthesis of a new heterogeneous gold nanocatalyst stabilized by di-alkyne ligand and its applications for photocatalytic dye degradation and transfer hydrogenation reaction. J. Nanopart. Res. 2021, 23, 67.

[25]

Eyimegwu, P. N.; Lartey, J. A.; Kim, J. H. Gold-nanoparticle-embedded poly(N-isopropylacrylamide) microparticles for selective quasi-homogeneous catalytic homocoupling reactions. ACS Appl. Nano Mater. 2019, 2, 6057–6066.

[26]

Rossi, L. M.; Fiorio, J. L.; Garcia, M. A. S.; Ferraz, C. P. The role and fate of capping ligands in colloidally prepared metal nanoparticle catalysts. Dalton Trans. 2018, 47, 5889–5915.

[27]

Yoskamtorn, T.; Yamazoe, S.; Takahata, R.; Nishigaki, J. I.; Thivasasith, A.; Limtrakul, J.; Tsukuda, T. Thiolate-mediated selectivity control in aerobic alcohol oxidation by porous carbon-supported Au25 clusters. ACS Catal. 2014, 4, 3696–3700.

[28]

Li, C. H.; Xu, S. K.; Jin, M.; Wan, D. C. Trace thioether inserted polyamine patches on a support mediate uniform gold nanoclusters as ultrahigh active catalysts. J. Mater. Chem. A 2021, 9, 15714–15723.

[29]

Zhang, G. R.; Xu, B. Q. Surprisingly strong effect of stabilizer on the properties of aunanoparticles and Pt^Au nanostructures in electrocatalysis. Nanoscale 2010, 2, 2798–2804.

[30]

Rahim, S.; Ali, S. A.; Ahmed, F.; Imran, M.; Shah, M. R.; Malik, M. I. Evaluation of morphology, aggregation pattern and size-dependent drug-loading efficiency of gold nanoparticles stabilised with poly(2-vinyl pyridine). J. Nanopart. Res. 2017, 19, 259.

[31]

Gao, L.; Nishikata, T.; Kojima, K.; Chikama, K.; Nagashima, H. Water- and organo-dispersible gold nanoparticles supported by using ammonium salts of hyperbranched polystyrene: Preparation and catalysis. Chem. Asian J. 2013, 8, 3152–3163.

[32]

Yamazoe, S.; Koyasu, K.; Tsukuda, T. Nonscalable oxidation catalysis of gold clusters. Acc. Chem. Res. 2014, 47, 816–824.

[33]

Ishida, R.; Yamazoe, S.; Koyasu, K.; Tsukuda, T. Repeated appearance and disappearance of localized surface plasmon resonance in 1.2 nm gold clusters induced by adsorption and desorption of hydrogen atoms. Nanoscale 2016, 8, 2544–2547.

[34]

Matsuo, A.; Hasegawa, S.; Takano, S.; Tsukuda, T. Electron-rich gold clusters stabilized by poly(vinylpyridines) as robust and active oxidation catalysts. Langmuir 2020, 36, 7844–7849.

[35]

Tsunoyama, H.; Sakurai, H.; Negishi, Y.; Tsukuda, T. Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. J. Am. Chem. Soc. 2005, 127, 9374–9375.

[36]

Tsunoyama, H.; Sakurai, H.; Tsukuda, T. Size effect on the catalysis of gold clusters dispersed in water for aerobic oxidation of alcohol. Chem. Phys. Lett. 2006, 429, 528–532.

[37]

Yang, N. T.; Pattisson, S.; Douthwaite, M.; Zeng, G. F.; Zhang, H.; Ma, J. Y.; Hutchings, G. J. Influence of stabilizers on the performance of Au/TiO2 catalysts for CO oxidation. ACS Catal. 2021, 11, 11607–11615.

[38]

Abis, L.; Freakley, S. J.; Dodekatos, G.; Morgan, D. J.; Sankar, M.; Dimitratos, N.; He, Q.; Kiely, C. J.; Hutchings, G. J. Highly active gold and gold-palladium catalysts prepared by colloidal methods in the absence of polymer stabilizers. ChemCatChem 2017, 9, 2914–2918.

[39]

Dong, H.; Dai, Y.; Zhang, X. J.; Zhang, Z. G.; Fu, S. L.; Zhong, Z. L. The influence of amine structures on the stability and catalytic activity of gold nanoparticles stabilized by amine-modified hyperbranched polymers. Nanotechnology 2018, 29, 055705.

[40]

Khoury, L. R.; Goldbart, R.; Traitel, T.; Enden, G.; Kost, J. Harvesting low molecular weight biomarkers using gold nanoparticles. ACS Nano 2015, 9, 5750–5759.

[41]

Huang, Y.; Zhao, M. T.; Han, S. K.; Lai, Z. C.; Yang, J.; Tan, C. L.; Ma, Q. L.; Lu, Q. P.; Chen, J. Z.; Zhang, X. et al. Growth of Au nanoparticles on 2D metalloporphyrinic metal-organic framework nanosheets used as biomimetic catalysts for cascade reactions. Adv. Mater. 2017, 29, 1700102.

[42]

Luo, W. J.; Zhu, C. F.; Su, S.; Li, D.; He, Y.; Huang, Q.; Fan, C. H. Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. ACS Nano 2010, 4, 7451–7458.

[43]

Hong, C. Y.; Chen, L. L.; Wu, C. Y.; Yang, D.; Dai, J. Y.; Huang, Z. Y.; Cai, R.; Tan, W. H. Green synthesis of Au@WSe2 hybrid nanostructures with the enhanced peroxidase-like activity for sensitive colorimetric detection of glucose. Nano Res. 2022, 15, 1587–1592.

[44]

Hong, C. Y.; Zhang, X. X.; Wu, C. Y.; Chen, Q.; Yang, H. F.; Yang, D.; Huang, Z. Y.; Cai, R.; Tan, W. H. On-site colorimetric detection of cholesterol based on polypyrrole nanoparticles. ACS Appl. Mater. Interfaces 2020, 12, 54426–54432.

[45]

Ge, J.; Yu, J. H.; Yang, H. F.; Yang, D.; Cai, R. Human serum albumin templated MnO2 nanosheets as an efficient biomimetic oxidase for biomolecule sensing. J. Mater. Chem. B 2020, 8, 11090–11095.

[46]

Cai, R.; Yang, D.; Lin, K. T.; Cao, T. S.; Lyv, Y. F.; Chen, K. F.; Yang, Y.; Ge, J.; Xia, L.; Christou, G. et al. 3D halos assembled from Fe3O4/Au NPs with enhanced catalytic and optical properties. Nanoscale 2019, 11, 20968–20976.

[47]

Prati, L.; Villa, A. Gold colloids: From quasi-homogeneous to heterogeneous catalytic systems. Acc. Chem. Res. 2014, 47, 855–863.

[48]

Wang, Q. Q.; Zhang, X. P.; Huang, L.; Zhang, Z. Q.; Dong, S. J. GOx@ZIF-8(NiPd) nanoflower: An artificial enzyme system for tandem catalysis. Angew. Chem., Int. Ed. 2017, 56, 16082–16085.

[49]

Gole, A.; Murphy, C. J. Seed-mediated synthesis of gold nanorods: Role of the size and nature of the seed. Chem. Mater. 2004, 16, 3633–3640.

[50]

Zhong, R. Y.; Sun, K. Q.; Hong, Y. C.; Xu, B. Q. Impacts of organic stabilizers on catalysis of Au nanoparticles from colloidal preparation. ACS Catal. 2014, 4, 3982–3993.

[51]

Wang, S.; Chen, W.; Liu, A. L.; Hong, L.; Deng, H. H.; Lin, X. H. Comparison of the peroxidase-like activity of unmodified, amino-modified, and citrate-capped gold nanoparticles. ChemPhysChem 2012, 13, 1199–1204.

[52]

Zhang, H. J.; Okumura, M.; Toshima, N. Stable dispersions of PVP-protected Au/Pt/Ag trimetallic nanoparticles as highly active colloidal catalysts for aerobic glucose oxidation. J. Phys. Chem. C 2011, 115, 14883–14891.

[53]

Zhang, G. R.; Xu, B. Q. Nano-size effect of Au catalyst for electrochemical reduction of oxygen in alkaline electrolyte. Chin. J. Catal. 2013, 34, 942–948.

[54]

Chen, J. X.; Wu, W. W.; Huang, L.; Ma, Q.; Dong, S. J. Self-indicative gold nanozyme for H2O2 and glucose sensing. Chem.−Eur. J. 2019, 25, 11940–11944.

[55]

Chatterjee, P.; Wang, H.; Manzano, J. S.; Kanbur, U.; Sadow, A. D.; Slowing, I. I. Surface ligands enhance the catalytic activity of supported Au nanoparticles for the aerobic α-oxidation of amines to amides. Catal. Sci. Technol. 2022, 12, 1922–1933.

[56]

Okumura, M.; Kitagawa, Y.; Kawakami, T.; Haruta, M. Theoretical investigation of the hetero-junction effect in PVP-stabilized Au13 clusters. The role of PVP in their catalytic activities. Chem. Phys. Lett. 2008, 459, 133–136.

[57]

Zhang, M. F.; Hao, J. C.; Neyman, A.; Wang, Y. F.; Weinstock, I. A. Influence of polyoxometalate protecting ligands on catalytic aerobic oxidation at the surfaces of gold nanoparticles in water. Inorg. Chem. 2017, 56, 2400–2408.

[58]

Tsunoyama, H.; Ichikuni, N.; Sakurai, H.; Tsukuda, T. Effect of electronic structures of Au clusters stabilized by poly(N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. J. Am. Chem. Soc. 2009, 131, 7086–7093.

[59]

Zhang, Z. F.; Cui, H.; Lai, C. Z.; Liu, L. J. Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications. Anal. Chem. 2005, 77, 3324–3329.

[60]

Villa, A.; Wang, D.; Su, D. S.; Prati, L. Gold sols as catalysts for glycerol oxidation: The role of stabilizer. ChemCatChem 2009, 1, 510–514.

[61]

Zhong, R. Y.; Yan, X. H.; Gao, Z. K.; Zhang, R. J.; Xu, B. Q. Stabilizer substitution and its effect on the hydrogenation catalysis by Au nanoparticles from colloidal synthesis. Catal. Sci. Technol. 2013, 3, 3013–3019.

[62]

Wang, X. Q.; Xiong, T. D.; Cui, M.; Guan, X. L.; Yuan, J. C.; Wang, Z. C.; Li, R. F.; Zhang, H. R.; Duan, S. F.; Wei, F. Targeted self-activating Au-Fe3O4 composite nanocatalyst for enhanced precise hepatocellular carcinoma therapy via dual nanozyme-catalyzed cascade reactions. Appl. Mater. Today 2020, 21, 100827.

[63]

Zhang, L. L.; Pan, J.; Long, Y.; Li, J.; Li, W.; Song, S. Y.; Shi, Z.; Zhang, H. J. CeO2-encapsulated hollow Ag–Au nanocage hybrid nanostructures as high-performance catalysts for cascade reactions. Small 2019, 15, 1903182.

[64]

Xu, Y. Q.; Fei, J. B.; Li, G. L.; Yuan, T. T.; Xu, X.; Li, J. B. Nanozyme-catalyzed cascade reactions for mitochondria-mimicking oxidative phosphorylation. Angew. Chem., Int. Ed. 2019, 58, 5572–5576.

[65]

Xin, J. Y.; Lin, K.; Wang, Y.; Xia, C. G. Methanobactin-mediated synthesis of gold nanoparticles supported over Al2O3 toward an efficient catalyst for glucose oxidation. Int. J. Mol. Sci. 2014, 15, 21603–21620.

[66]

Lipmann, F.; Tuttle, L. C. A specific micromethod for the determination of acyl phosphates. J. Biol. Chem. 1945, 159, 21–28.

[67]

Rakitzis, E. T.; Papandreou, P. Reactivity of 6-phosphogluconolactone with hydroxylamine: The possible involvement of glucose-6-phosphate dehydrogenase in endogenous glycation reactions. Chem. -Biol. Interact. 1998, 113, 205–216.

[68]

Chen, J. X.; Ma, Q.; Li, M. H.; Chao, D. Y.; Huang, L.; Wu, W. W.; Fang, Y. X.; Dong, S. J. Glucose-oxidase like catalytic mechanism of noble metal nanozymes. Nat. Commun. 2021, 12, 3375.

[69]

Li, M. H.; Chen, J. X.; Wu, W. W.; Fang, Y. X.; Dong, S. J. Oxidase-like MOF-818 nanozyme with high specificity for catalysis of catechol oxidation. J. Am. Chem. Soc. 2020, 142, 15569–15574.

[70]

Zhang, Y. G.; Li, S.; Liu, H. L.; Long, W.; Zhang, X. D. Enzyme-like properties of gold clusters for biomedical application. Front. Chem. 2020, 8, 219.

[71]

Zope, B. N.; Hibbitts, D. D.; Neurock, M.; Davis, R. J. Reactivity of the gold/water interface during selective oxidation catalysis. Science 2010, 330, 74–78.

[72]

Zhao, Y.; Huang, Y. C.; Zhu, H.; Zhu, Q. Q.; Xia, Y. S. Three-in-one: Sensing, self-assembly, and cascade catalysis of cyclodextrin modified gold nanoparticles. J. Am. Chem. Soc. 2016, 138, 16645–16654.

[73]

Chen, J. X.; Zheng, X. L.; Zhang, J. X.; Ma, Q.; Zhao, Z. W.; Huang, L.; Wu, W. W.; Wang, Y.; Wang, J.; Dong, S. J. Bubble-templated synthesis of nanocatalyst Co/C as NADH oxidase mimic. Natl. Sci. Rev. 2022, 9, nwab186.

[74]

Lin, C. H.; Wei, L. Y.; Lee, J. H.; Lien, C. L.; Lu, C. H.; Yuan, C. J. Effect of anions on the oxidation and reduction of hydrogen peroxide on the gold nanoparticle-deposited carbon fiber paper electrode. Electrochim. Acta 2015, 180, 64–70.

[75]

Ayed, D.; Laubender, E.; Souiri, M.; Yurchenko, O.; Marmouch, H.; Urban, G.; Othmane, A. Carbon nanotubes supported Ru-Au nanoparticles with core–shell structure for glucose detection with high resistance against chloride poisoning. J. Electrochem. Soc. 2017, 164, B767–B775.

[76]

Rong, Y. Y.; Malpass-Evans, R.; Carta, M.; McKeown, N. B.; Attard, G. A.; Marken, F. Intrinsically porous polymer protects catalytic gold particles for enzymeless glucose oxidation. Electroanalysis 2014, 26, 904–909.

[77]

Jing, C.; Rawson, F. J.; Zhou, H.; Shi, X.; Li, W. H.; Li, D. W.; Long, Y. T. New insights into electrocatalysis based on plasmon resonance for the real-time monitoring of catalytic events on single gold nanorods. Anal. Chem. 2014, 86, 5513–5518.

[78]

Pasta, M.; La Mantia, F.; Cui, Y. Mechanism of glucose electrochemical oxidation on gold surface. Electrochim. Acta 2010, 55, 5561–5568.

[79]

Satnami, M. L.; Chandraker, K.; Vaishanav, S. K.; Nagwanshi, R. Interaction of thiolated amino acids and peptide onto the gold nanoparticle surface: Radical scavenging activity. Indian J. Chem. A 2015, 54A, 1206–1214.

[80]

Ghosh, S. K.; Nath, S.; Kundu, S.; Esumi, K.; Pal, T. Solvent and ligand effects on the localized surface plasmon resonance (LSPR) of gold colloids. J. Phys. Chem. B 2004, 108, 13963–13971.

[81]

Häkkinen, H. The gold–sulfur interface at the nanoscale. Nat. Chem. 2012, 4, 443–455.

[82]

Ghosh, C.; Mondal, T.; Bhattacharyya, K. Enzyme activity of α-chymotrypsin: Deactivation by gold nano-cluster and reactivation by glutathione. J. Colloid Interface Sci. 2017, 494, 74–81.

[83]

Zhang, I. Y.; Wu, J. M.; Luo, Y.; Xu, X. Trends in R–X bond dissociation energies (R = Me, Et, i-Pr, t-Bu, X = H, Me, Cl, OH). J. Chem. Theory Comput. 2010, 6, 1462–1469.

[84]

Gilbert, T. M. Tests of the MP2 model and various DFT models in predicting the structures and B–N bond dissociation energies of amine–boranes (X3C)mH3−mB-N(CH3)nH3−n (X = H, F; m = 0–3; n = 0–3): Poor performance of the B3LYP approach for dative B–N bonds. J. Phys. Chem. A 2004, 108, 2550–2554.

[85]

Henry, D. J.; Parkinson, C. J.; Mayer, P. M.; Radom, L. Bond dissociation energies and radical stabilization energies associated with substituted methyl radicals. J. Phys. Chem. A 2001, 105, 6750–6756.

[86]

Wu, J. M.; Zhou, Y. W.; Xu, X. The X1 family of methods that combines B3LYP with neural network corrections for an accurate yet efficient prediction of thermochemistry. Int. J. Quantum Chem. 2015, 115, 1021–1031.

Nano Research
Pages 4758-4766
Cite this article:
Xu L, Chen J, Ma Q, et al. Critical evaluation of the glucose oxidase-like activity of gold nanoparticles stabilized by different polymers. Nano Research, 2023, 16(4): 4758-4766. https://doi.org/10.1007/s12274-022-5218-1
Topics:

1024

Views

13

Crossref

13

Web of Science

13

Scopus

1

CSCD

Altmetrics

Received: 14 August 2022
Revised: 12 October 2022
Accepted: 19 October 2022
Published: 22 November 2022
© Tsinghua University Press 2022
Return