Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Tip-enhanced Raman spectroscopy (TERS) imaging is a super-resolution imaging technique that features the merits of both surface-enhanced Raman spectroscopy (SERS) and scanning probe microscopy (SPM), such as the high chemical sensitivity from the former and the nanoscale spatial resolution from the latter. These advantages make TERS an essential nano-spectroscopic characterization technique for chemical analysis, materials science, bio-sensing, etc. TERS probes, the most critical factor determining the TERS imaging quality, are expected to provide a highly confined electromagnetic hotspot with a minimized scattering background for the generation of Raman signals with high spatial resolution. After two decades of development, numerous probe design concepts have been proposed and demonstrated. This review provides a comprehensive overview of the state-of-the-art TERS probe designs, from the working mechanism to the practical performance. We start with reviewing the recent development of TERS configurations and the corresponding working mechanisms, including the SPM platforms, optical excitation/collection techniques, and probe preparation methods. We then review the emerging novel TERS probe designs, including the remote-excitation probes, the waveguide-based nanofocusing probes, the metal-coated nanofocusing probes, the nanowire-assisted selective-coupling probes, and the tapered metal-insulator-metal probes. Our discussion focuses on a few critical aspects, including the surface-plasmon-polariton (SPP) hotspot excitation technique, conversion efficiency, working frequency, and controllability. In the end, we review the latest TERS applications and give a perspective on the future of TERS.
Perry, C. H.; Hall, D. B. Temperature dependence of the raman spectrum of BaTiO3. Phys. Rev. Lett. 1965, 15, 700–702.
Chen, J. N.; Yang, W. S.; Dick, K.; Deppert, K.; Xu, H. Q.; Samuelson, L.; Xu, H. X. Tip-enhanced Raman scattering of p-thiocresol molecules on individual gold nanoparticles. Appl. Phys. Lett. 2008, 92, 093110.
Pettinger, B.; Ren, B.; Picardi, G.; Schuster, R.; Ertl, G. Nanoscale probing of adsorbed species by tip-enhanced raman spectroscopy. Phys. Rev. Lett. 2004, 92, 096101.
Helbing, C.; Deckert-Gaudig, T.; Firkowska-Boden, I.; Wei, G.; Deckert, V.; Jandt, K. D. Protein handshake on the nanoscale: How albumin and hemoglobin self-assemble into nanohybrid fibers. ACS Nano 2018, 12, 1211–1219.
Dieringer, J. A.; Lettan, R. B.; Scheidt, K. A.; Van Duyne, R. P. A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2007, 129, 16249–16256.
Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166.
Jeanmaire, D. L.; Van Duyne, R. P. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfac. Electrochem. 1977, 84, 1–20.
Albrecht, M. G.; Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 1977, 99, 5215–5217.
Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106.
Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Single molecule detection using surface-enhanced raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667–1670.
Xu, W.; Li, R. H.; Wang, C. H.; Zhong, J. H.; Liu, J. Y.; Hong, W. J. Investigation of electronic excited states in single-molecule junctions. Nano Res. 2022, 15, 5726–5745.
Ling, X. Y.; Yan, R. X.; Lo, S.; Hoang, D. T.; Liu, C.; Fardy, M. A.; Khan, S. B.; Asiri, A. M.; Bawaked, S. M.; Yang, P. D. Alumina-coated Ag nanocrystal monolayers as surfaceenhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates. Nano Res. 2014, 7, 132–143.
Fang, Y.; Seong, N. H.; Dlott, D. D. Measurement of the distribution of site enhancements in surface-enhanced raman scattering. Science 2008, 321, 388–392.
Wessel, J. Surface-enhanced optical microscopy. J. Opt. Soc. Am. B 1985, 2, 1538–1541.
Stöckle, R. M.; Suh, Y. D.; Deckert, V.; Zenobi, R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 2000, 318, 131–136.
Hayazawa, N.; Inouye, Y.; Sekkat, Z.; Kawata, S. Metallized tip amplification of near-field Raman scattering. Opt. Commun. 2000, 183, 333–336.
Anderson, M. S. Locally enhanced Raman spectroscopy with an atomic force microscope. Appl. Phys. Lett. 2000, 76, 3130–3132.
Pettinger, B.; Picardi, G.; Schuster, R.; Ertl, G. Surface enhanced raman spectroscopy: Towards single molecule spectroscopy. Electrochemistry 2000, 68, 942–949.
Steidtner, J.; Pettinger, B. Tip-enhanced raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Phys. Rev. Lett. 2008, 100, 236101.
Kurouski, D.; Zaleski, S.; Casadio, F.; Van Duyne, R. P.; Shah, N. C. Tip-enhanced Raman spectroscopy (TERS) for in situ identification of indigo and iron gall ink on paper. J. Am. Chem. Soc. 2014, 136, 8677–8684.
Ichimura, T.; Hayazawa, N.; Hashimoto, M.; Inouye, Y.; Kawata, S. Application of tip-enhanced microscopy for nonlinear Raman spectroscopy. Appl. Phys. Lett. 2004, 84, 1768–1770.
Urbieta, M.; Barbry, M.; Zhang, Y.; Koval, P.; Sánchez-Portal, D.; Zabala, N.; Aizpurua, J. Atomic-scale lightning rod effect in plasmonic picocavities: A classical view to a quantum effect. ACS nano 2018, 12, 585–595.
Wei, H.; Xu, H. X. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy. Nanoscale 2013, 5, 10794–10805.
Krug, J. T.; Sánchez, E. J.; Xie, X. S. Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation. J. Chem. Phys. 2002, 116, 10895–10901.
Kang, J. H.; Kim, D. S.; Park, Q. H. Local capacitor model for plasmonic electric field enhancement. Phys. Rev. Lett. 2009, 102, 093906.
Taguchi, A.; Hayazawa, N.; Furusawa, K.; Ishitobi, H.; Kawata, S. Deeptab tipptabiuchi Raman scattering. J. Raman Spectrosc. 2009, 40, 1324–1330.
Balois, M. V.; Hayazawa, N.; Catalan, F. C.; Kawata, S.; Yano, T. A.; Hayashi, T. Tip-enhanced THz Raman spectroscopy for local temperature determination at the nanoscale. Anal. Bioanal. Chem. 2015, 407, 8205–8213.
Hutter, E.; Fendler, J. H. Exploitation of localized surface plasmon resonance. Adv. Mater. 2004, 16, 1685–1706.
Anger, P.; Bharadwaj, P.; Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 2006, 96, 113002.
Burresi, M.; Van Oosten, D.; Kampfrath, T.; Schoenmaker, H.; Heideman, R.; Leinse, A.; Kuipers, L. Probing the magnetic field of light at optical frequencies. Science 2009, 326, 550–553.
Le Feber, B.; Rotenberg, N.; Beggs, D. M.; Kuipers, L. Simultaneous measurement of nanoscale electric and magnetic optical fields. Nat. Photon. 2014, 8, 43–46.
Bharadwaj, P.; Novotny, L. Spectral dependence of single molecule fluorescence enhancement. Opt. Express 2007, 15, 14266–14274.
Fleischer, M.; Weber-Bargioni, A.; Altoe, M. V. P.; Schwartzberg, A. M.; Schuck, P. J.; Cabrini, S.; Kern, D. P. Gold nanocone near-field scanning optical microscopy probes. ACS Nano 2011, 5, 2570–2579.
Neumann, L.; Van't Oever, J.; Van Hulst, N. F. A resonant scanning dipole-antenna probe for enhanced nanoscale imaging. Nano Lett. 2013, 13, 5070–5074.
Vasconcelos, T. L.; Archanjo, B. S.; Fragneaud, B.; Oliveira, B. S.; Riikonen, J.; Li, C. F.; Ribeiro, D. S.; Rabelo, C.; Rodrigues, W. N.; Jorio, A. et al. Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes. ACS Nano 2015, 9, 6297–6304.
Oliveira, B. S.; Archanjo, B. S.; Valaski, R.; Achete, C. A.; Cançado, L. G.; Jorio, A.; Vasconcelos, T. L. Nanofabrication of plasmon-tunable nanoantennas for tip-enhanced Raman spectroscopy. J. Chem. Phys. 2020, 153, 114201.
Tschannen, C. D.; Frimmer, M.; Vasconcelos, T. L.; Shi, L.; Pichler, T.; Novotny, L. Tip-enhanced stokes-anti-stokes scattering from carbyne. Nano Lett. 2022, 22, 3260–3265.
Richard-Lacroix, M.; Deckert, V. Direct molecular-level near-field plasmon and temperature assessment in a single plasmonic hotspot. Light Sci. Appl 2020, 9, 35.
Vasconcelos, T. L.; Archanjo, B. S.; Oliveira, B. S.; Silva, W. F.; Alencar, R. S.; Rabelo, C.; Achete, C. A.; Jorio, A.; Cançado, L. G. Optical nanoantennas for tip-enhanced raman spectroscopy. IEEE J. Sel. Top. Quant. Electron. 2021, 27, 4600411.
Zhang, Z. L.; Sheng, S. X.; Wang, R. M.; Sun, M. T. Tip-enhanced raman spectroscopy. Anal. Chem. 2016, 88, 9328–9346.
Stadler, J.; Schmid, T.; Zenobi, R. Developments in and practical guidelines for tip-enhanced Raman spectroscopy. Nanoscale 2012, 4, 1856–1870.
Kumar, N.; Rae, A.; Roy, D. Accurate measurement of enhancement factor in tip-enhanced Raman spectroscopy through elimination of far-field artefacts. Appl. Phys. Lett. 2014, 104, 123106.
Kravtsov, V.; Ulbricht, R.; Atkin, J. M.; Raschke, M. B. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging. Nat. Nanotechnol. 2016, 11, 459–464.
Pile, D. F. P.; Gramotnev, D. K. Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides. Appl. Phys. Lett. 2006, 89, 041111.
Vernon, K. C.; Gramotnev, D. K.; Pile, D. F. Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate. J. Appl. Phys. 2007, 101, 104312.
Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 2004, 93, 137404.
Giugni, A.; Torre, B.; Toma, A.; Francardi, M.; Malerba, M.; Alabastri, A.; Zaccaria, R. P.; Stockman, M. I.; Di Fabrizio, E. Hot-electron nanoscopy using adiabatic compression of surface plasmons. Nat. Nanotechnol. 2013, 8, 845–852.
Nerkararyan, K. V. Superfocusing of a surface polariton in a wedge-like structure. Phys. Lett. A 1997, 237, 103–105.
Dakss, M. L.; Kuhn, L.; Heidrich, P. F.; Scott, B. A. Grating coupler for efficient excitation of optical guided waves in thin films. App. Phys. Let. 1970, 17, 268.
De Angelis, F.; Das, G.; Candeloro, P.; Patrini, M.; Galli, M.; Bek, A.; Lazzarino, M.; Maksymov, I.; Liberale, C.; Andreani, L. C. et al. Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. Nat. Nanotechnol. 2010, 5, 67–72.
Janunts, N. A.; Baghdasaryan, K. S.; Nerkararyan, K. V.; Hecht, B. Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip. Opt. Commun. 2005, 253, 118–124.
Kim, S.; Yu, N.; Ma, X. Z.; Zhu, Y. Z.; Liu, Q. S.; Liu, M.; Yan, R. X. High external-efficiency nanofocusing for lens-free near-field optical nanoscopy. Nat. Photon. 2019, 13, 636–643.
Wei, H.; Xu, H. Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits. Nanophotoics 2012, 1, 155–169.
Bao, W.; Borys, N. J.; Ko, C.; Suh, J.; Fan, W.; Thron, A.; Zhang, Y. J.; Buyanin, A.; Zhang, J.; Cabrini, S. et al. Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide. Nat. Commun. 2015, 6, 7993.
Richard-Lacroix, M.; Zhang, Y.; Dong, Z. C.; Deckert, V. Mastering high resolution tip-enhanced Raman spectroscopy: Towards a shift of perception. Chem. Soc. Rev. 2017, 46, 3922–3944.
Yu, J.; Saito, Y.; Ichimura, T.; Kawata, S.; Verma, P. Far-field free tapping-mode tip-enhanced Raman microscopy. Appl. Phys. Lett. 2013, 102, 123110.
Yeo, B. S.; Zhang, W.; Vannier, C.; Zenobi, R. Enhancement of Raman signals with silver-coated tips. Appl. Spectrosc. 2006, 60, 1142–1147.
Zhang, M.; Wang, J. Plasmonic lens focused longitudinal field excitation for tip-enhanced Raman spectroscopy. Nanoscale Res. Lett. 2015, 10, 189.
Hayazawa, N.; Saito, Y.; Kawata, S. Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy. Appl. Phys. Lett. 2004, 85, 6239–6241.
Lieb, M. A.; Meixner, A. J. A high numerical aperture parabolic mirror as imaging device for confocal microscopy. Opt. Express 2001, 8, 458–474.
Zhang, D.; Wang, X.; Braun, K.; Egelhaaf, H. J.; Fleischer, M.; Hennemann, L.; Hintz, H.; Stanciu, C.; Brabec, C. J.; Kern, D. P. et al. Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials. J. Raman Spectrosc. 2009, 40, 1371–1376.
Kazemi-Zanjani, N.; Vedraine, S.; Lagugné-Labarthet, F. Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light. Opt. Express 2013, 21, 25271–25276.
Fan, Y.; Jin, D.; Wu, X. J.; Fang, H.; Yuan, X. C. Facilitating hotspot alignment in tip-enhanced Raman spectroscopy via the silver photoluminescence of the probe. Sensors 2020, 20, 6687.
Wang, H. F.; Shi, L. P.; Lukyanchuk, B.; Sheppard, C.; Chong, C. T. Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nat. Photon. 2008, 2, 501–505.
Zhan, Q. W. Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam. Opt. Lett. 2006, 31, 1726–1728.
Jia, H. W.; Liu, H. T.; Zhong, Y. Role of surface plasmon polaritons and other waves in the radiation of resonant optical dipole antennas. Sci. Rep. 2015, 5, 8456.
Meng, L. Y.; Yang, Z. L. Directional surface plasmon-coupled emission of tilted-tip enhanced spectroscopy. Nanophotonics 2018, 7, 1325–1332.
Sifat, A. A.; Potma, E. O. Optimizing the near-field and fard fiel properties of tips in tipoperties Raman scattering. J. Raman Spectrosc. 2021, 52, 2018–2028.
Stadler, J.; Schmid, T.; Zenobi, R. Nanoscale chemical imaging using top-illumination tip-enhanced raman spectroscopy. Nano Lett. 2010, 10, 4514–4520.
Issa, N. A.; Guckenberger, R. Fluorescence near metal tips: The roles of energy transfer and surface plasmon polaritons. Opt. Express 2007, 15, 12131–12144.
Faggiani, R.; Yang, J. J.; Lalanne, P. Quenching, plasmonic, and radiative decays in nanogap emitting devices. ACS Photonics 2015, 2, 1739–1744.
Müller, A. D.; Müller, F.; Hietschold, M.; Demming, F.; Jersch, J.; Dickmann, K. Characterization of electrochemically etched tungsten tips for scanning tunneling microscopy. Rev. Sci. Instrum. 1999, 70, 3970–3972.
Neacsu, C. C.; Steudle, G. A.; Raschke, M. B. Plasmonic light scattering from nanoscopic metal tips. Appl. Phys. B 2005, 80, 295–300.
Eligal, L.; Culfaz, F.; McCaughan, V.; Cade, N. I.; Richards, D. Etching gold tips suitable for tip-enhanced near-field optical microscopy. Rev. Sci. Instrum. 2009, 80, 033701.
Kharintsev, S. S.; Rogov, A. M.; Kazarian, S. G. Nanopatterning and tuning of optical taper antenna apex for tip-enhanced Raman scattering performance. Rev. Sci. Instrum. 2013, 84, 093106.
Ren, B.; Picardi, G.; Pettinger, B. Preparation of gold tips suitable for tip-enhanced Raman spectroscopy and light emission by electrochemical etching. Rev. Sci. Instrum. 2004, 75, 837–841.
Wang, X.; Liu, Z.; Zhuang, M. D.; Zhang, H. M.; Wang, X.; Xie, Z. X.; Wu, D. Y.; Ren, B.; Tian, Z. Q. Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips. Appl. Phys. Lett. 2007, 91, 101105.
Liu, Q. S.; Kim, S.; Ma, X. Z.; Yu, N.; Zhu, Y. Z.; Deng, S. Y.; Yan, R. X.; Zhao, H. J.; Liu, M. Ultra-sharp and surfactant-free silver nanowire for scanning tunneling microscopy and tip-enhanced Raman spectroscopy. Nanoscale 2019, 11, 7790–7797.
Bailo, E.; Deckert, V. Tip-enhanced raman spectroscopy of single RNA strands: Towards a novel direct-sequencing method. Angew. Chem., Int. Ed. 2008, 47, 1658–1661.
Mino, T.; Saito, Y.; Verma, P. Quantitative analysis of polarization-controlled tip-enhanced Raman imaging through the evaluation of the tip dipole. ACS Nano 2014, 8, 10187–10195.
Chen, H. K.; Zhang, Y. Q.; Dai, Y. M.; Min, C. J.; Zhu, S. W.; Yuan, X. C. Facilitated tip-enhanced Raman scattering by focused gap-plasmon hybridization. Photon. Res. 2020, 8, 103–109.
Capaccio, A.; Sasso, A.; Tarallo, O.; Rusciano, G. Coral-like plasmonic probes for tip-enhanced Raman spectroscopy. Nanoscale 2020, 12, 24376–24384.
Taguchi, A.; Yu, J.; Verma, P.; Kawata, S. Optical antennas with multiple plasmonic nanoparticles for tip-enhanced Raman microscopy. Nanoscale 2015, 7, 17424–17433.
Mahmoodi, N.; Rushdi, A. I.; Bowen, J.; Sabouri, A.; Anthony, C. J.; Mendes, P. M.; Preece, J. A. Room temperature thermally evaporated thin Au film on Si suitable for application of thiol self-assembled monolayers in micro/nano-electro-mechanical-systems sensors. J. Vacuum Sci. Technol. A Vacuum, Surf Films 2017, 35, 041514.
Johnson, T. W.; Lapin, Z. J.; Beams, R.; Lindquist, N. C.; Rodrigo, S. G.; Novotny, L.; Oh, S. H. Highly reproducible near-field optical imaging with sub-20-nm resolution based on template-stripped gold pyramids. ACS Nano 2012, 6, 9168–9174.
Vasconcelos, T. L.; Archanjo, B. S.; Oliveira, B. S.; Valaski, R.; Cordeiro, R. C.; Medeiros, H. G.; Rabelo, C.; Ribeiro, A.; Ercius, P.; Achete, C. A. et al. Plasmon-tunable tip pyramids: Monopole nanoantennas for near-field scanning optical microscopy. Adv. Opt. Mater. 2018, 6, 1800528.
Höppener, C.; Lapin, Z. J.; Bharadwaj, P.; Novotny, L. Self-similar gold-nanoparticle antennas for a cascaded enhancement of the optical field. Phys. Rev. Lett. 2012, 109, 017402.
Leiterer, C.; Deckert-Gaudig, T.; Singh, P.; Wirth, J.; Deckert, V.; Fritzsche, W. Dielectrophoretic positioning of single nanoparticles on atomic force microscope tips for tip-enhanced Raman spectroscopy. Electrophoresis 2015, 36, 1142–1148.
Ma, X.; Grüßer, M.; Schuster, R. Plasmonic nanospheres with a handle—Local electrochemical deposition of Au or Ag at the apex of optically inactive W- or C-tips. Appl. Phys. Lett. 2015, 106, 241103.
Dill, T. J.; Rozin, M. J.; Palani, S.; Tao, A. R. Colloidal nanoantennas for hyperspectral chemical mapping. ACS nano 2016, 10, 7523–7531.
Walke, P.; Toyouchi, S.; Wolf, M.; Peeters, W.; Prabhu, S. R.; Inose, T.; De Feyter, S.; Fujita, Y.; Uji-I, H. Facilitating tip-enhanced Raman scattering on dielectric substrates via electrical cutting of silver nanowire probes. J. Phys. Chem. Lett. 2018, 9, 7117–7122.
Farahani, J. N.; Eisler, H. J.; Pohl, D. W.; Pavius, M.; Flückiger, P.; Gasser, P.; Hecht, B. Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy. Nanotechnology 2007, 18, 125506.
Guo, R.; Kinzel, E. C.; Li, Y.; Uppuluri, S. M.; Raman, A.; Xu, X. F. Three-dimensional mapping of optical near field of a nanoscale bowtie antenna. Opt. Express 2010, 18, 4961–4971.
Farahani, J. N.; Pohl, D. W.; Eisler, H. J.; Hecht, B. Single quantum dot coupled to a scanning optical antenna: A tunable superemitter. Phys. Rev. Lett. 2005, 95, 017402.
Archanjo, B. S.; Vasconcelos, T. L.; Oliveira, B. S.; Song, C.; Allen, F. I.; Achete, C. A.; Ercius, P. Plasmon 3D electron tomography and local electric-field enhancement of engineered plasmonic nanoantennas. ACS Photonics 2018, 5, 2834–2842.
Lindquist, N. C.; Johnson, T. W.; Nagpal, P.; Norris, D. J.; Oh, S. H. Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture. Sci. Rep. 2013, 3, 1857.
Wang, Y.; Srituravanich, W.; Sun, C.; Zhang, X. Plasmonic nearfield scanning probe with high transmission. Nano Lett. 2008, 8, 3041–3045.
Van Zanten, T. S.; Lopezn3. anc, M. J.; Garcia3. ance, M. F. Imaging individual proteins and nanodomains on intact cell membranes with a probeng ind optical antenna. Small 2010, 6, 270–275.
Husnik, M.; Klein, M. W.; Feth, N.; König, M.; Niegemann, J.; Busch, K.; Linden, S.; Wegener, M. Absolute extinction cross-section of individual magnetic split-ring resonators. Nat. Photon. 2008, 2, 614–617.
Babadjanyan, A. J.; Margaryan, N. L.; Nerkararyan, K. V. Superfocusing of surface polaritons in the conical structure. J. Appl. Phys. 2000, 87, 3785–3788.
Lu, F. F.; Zhang, W. D.; Huang, L. G.; Liang, S. H.; Mao, D.; Gao, F.; Mei, T.; Zhao, J. L. Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip. Opto-Electron. Adv. 2018, 1, 180010.
Kim, S.; Bailey, S.; Liu, M.; Yan, R. X. Decoupling co-existing surface plasmon polariton (SPP) modes in a nanowire plasmonic waveguide for quantitative mode analysis. Nano Res. 2017, 10, 2395–2404.
Issa, N. A.; Guckenberger, R. Optical nanofocusing on tapered metallic waveguides. Plasmonics 2007, 2, 31–37.
Gramotnev, D. K.; Vogel, M. W.; Stockman, M. I. Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods. J. Appl. Phys. 2008, 104, 034311.
Nagpal, P.; Lindquist, N. C.; Oh, S. H.; Norris, D. J. Ultrasmooth patterned metals for plasmonics and metamaterials. Science 2009, 325, 594–597.
Sánchez, E. J.; Krug, J. T.; Xie, X. S. Ion and electron beam assisted growth of nanometric SimOn structures for near-field microscopy. Rev. Sci. Instrum. 2002, 73, 3901–3907.
Ropers, C.; Neacsu, C. C.; Elsaesser, T.; Albrecht, M.; Raschke, M. B.; Lienau, C. Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source. Nano Lett. 2007, 7, 2784–2788.
Fang, Y.; Wei, H.; Hao, F.; Nordlander, P.; Xu, H. Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons. Nano Lett. 2009, 9, 2049–2053.
Minn, K.; Birmingham, B.; Ko, B.; Lee, H. W. H.; Zhang, Z. Interfacing photonic crystal fiber with a metallic nanoantenna for enhanced light nanofocusing. Photon. Res. 2021, 9, 252–258.
Zhang, K. F.; Bao, Y. F.; Cao, M. F.; Taniguchi, S. I.; Watanabe, M.; Kambayashi, T.; Okamoto, T.; Haraguchi, M.; Wang, X.; Kobayashi, K. et al. Low-background tip-enhanced raman spectroscopy enabled by a plasmon thin-film waveguide probe. Anal. Chem. 2021, 93, 7699–7706.
Berweger, S.; Atkin, J. M.; Olmon, R. L.; Raschke, M. B. Adiabatic tip-plasmon focusing for nano-raman spectroscopy. J. Phys. Chem. Lett. 2010, 1, 3427–3432.
Zhang, C.; Sun, J. H.; Xiao, X.; Sun, W. M.; Zhang, X. J.; Chu, T.; Yu, J. Z.; Yu, Y. D. High efficiency grating coupler for coupling between single-mode fiber and SOI waveguides. Chin. Phys. Lett. 2013, 30, 014207.
Umakoshi, T.; Saito, Y.; Verma, P. Highly efficient plasmonic tip design for plasmon nanofocusing in near-field optical microscopy. Nanoscale 2016, 8, 5634–5640.
Umakoshi, T.; Tanaka, M.; Saito, Y.; Verma, P. White nanolight source for optical nanoimaging. Sci. Adv. 2020, 6, eaba4179.
Knight, M. W.; Grady, N. K.; Bardhan, R.; Hao, F.; Nordlander, P.; Halas, N. J. Nanoparticle-mediated coupling of light into a nanowire. Nano Lett. 2007, 7, 2346–2350.
Lu, G.; De Keersmaecker, H.; Su, L.; Kenens, B.; Rocha, S.; Fron, E.; Chen, C.; Van Dorpe, P.; Mizuno, H.; Hofkens, J. et al. Live-cell SERS endoscopy using plasmonic nanowire waveguides. Adv. Mater. 2014, 26, 5124–5128.
Ma, X. Z.; Zhu, Y. Z.; Yu, N.; Kim, S.; Liu, Q. S.; Apontti, L.; Xu, D.; Yan, R. X.; Liu, M. Toward high-contrast atomic force microscopy-tip-enhanced Raman spectroscopy imaging: Nanoantenna-mediated remote-excitation on sharp-tip silver nanowire probes. Nano Lett. 2019, 19, 100–107.
Jiang, R. H.; Chen, C.; Lin, D. Z.; Chou, H. C.; Chu, J. Y.; Yen, T. J. Near-field plasmonic probe with super resolution and high throughput and signal-to-noise ratio. Nano Lett. 2018, 18, 881–885.
Li, S. B.; Yang, S. M.; Wang, F.; Liu, Q.; Cheng, B. Y.; Rosenwaks, Y. Plasmonic interference modulation for broadband nanofocusing. Nanophotonics 2021, 10, 4113–4123.
Stegeman, G. I.; Wallis, R. F.; Maradudin, A. A. Excitation of surface polaritons by end-fire coupling. Opt. Lett. 1983, 8, 386–388.
Fisher, C.; Botten, L. C.; Poulton, C. G.; McPhedran, R. C.; De Sterke, C. M. End-fire coupling efficiencies of surface plasmons for silver, gold, and plasmonic nitride compounds. J. Opt. Soc. Am. B 2016, 33, 1044–1054.
Fisher, C.; Botten, L. C.; Poulton, C. G.; McPhedran, R. C.; De Sterke, C. M. Efficient end-fire coupling of surface plasmons in a metal waveguide. J. Opt. Soc. Am. B 2015, 32, 412–425.
Masuda, H.; Fukuda, K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 1995, 268, 1466–1468.
Yao, J.; Liu, Z. W.; Liu, Y. M.; Wang, Y.; Sun, C.; Bartal, G.; Stacy, A. M.; Zhang, X. Optical negative refraction in bulk metamaterials of nanowires. Science 2008, 321, 930–930.
Sun, Y. G.; Yin, Y. D.; Mayers, B. T.; Herricks, T.; Xia, Y. N. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater. 2002, 14, 4736–4745.
Ditlbacher, H.; Hohenau, A.; Wagner, D.; Kreibig, U.; Rogers, M.; Hofer, F.; Aussenegg, F. R.; Krenn, J. R. Silver nanowires as surface plasmon resonators. Phys. Rev. Lett. 2005, 95, 257403.
Sanders, A. W.; Routenberg, D. A.; Wiley, B. J.; Xia, Y. N.; Dufresne, E. R.; Reed, M. A. Observation of plasmon propagation, redirection, and fan-out in silver nanowires. Nano Lett. 2006, 6, 1822–1826.
Pyayt, A. L.; Wiley, B.; Xia, Y. N.; Chen, A. T.; Dalton, L. Integration of photonic and silver nanowire plasmonic waveguides. Nat. Nanotechnol. 2008, 3, 660–665.
Yan, R. X.; Park, J. H.; Choi, Y.; Heo, C. J.; Yang, S. M.; Lee, L. P.; Yang, P. D. Nanowire-based single-cell endoscopy. Nat. Nanotechnol. 2012, 7, 191–196.
Yan, R. X.; Pausauskie, P.; Huang, J. X.; Yang, P. D. Direct photonic–plasmonic coupling and routing in single nanowires. Proc. Natl. Acad. Sci. USA 2009, 106, 21045–21050.
Guo, X.; Qiu, M.; Bao, J. M.; Wiley, B. J.; Yang, Q.; Zhang, X. N.; Ma, Y. G.; Yu, H. K.; Tong, L. M. Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. Nano Lett. 2009, 9, 4515–4519.
Lee, H. W.; Schmidt, M. A.; Russell, R. F.; Joly, N. Y.; Tyagi, H. K.; Uebel, P.; Russell, P. S. J. Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers. Opt. Express 2011, 19, 12180–12189.
Chen, X. W.; Sandoghdar, V.; Agio, M. Highly efficient interfacing of guided plasmons and photons in nanowires. Nano Lett. 2009, 9, 3756–3761.
Tuniz, A.; Chemnitz, M.; Dellith, J.; Weidlich, S.; Schmidt, M. A. Hybrid-mode-assisted long-distance excitation of short-range surface plasmons in a nanotip-enhanced step-index fiber. Nano Lett. 2017, 17, 631–637.
Khomeriki, R.; Ruffo, S. Nonadiabatic Landau–Zener tunneling in waveguide arrays with a step in the refractive index. Phys. Rev. Lett. 2005, 94, 113904.
Bouhelier, A.; Renger, J.; Beversluis, M. R.; Novotny, L. Plasmonuiselier tipsmonuisel nearmonuis optical microscopy. J. Microsc. 2003, 210, 220–224.
Tugchin, B. N.; Janunts, N.; Klein, A. E.; Steinert, M.; Fasold, S.; Diziain, S.; Sison, M.; Kley, E. B.; Tünnermann, A.; Pertsch, T. Plasmonic tip based on excitation of radially polarized conical surface plasmon polariton for detecting longitudinal and transversal fields. ACS Photonics 2015, 2, 1468–1475.
Ding, W.; Andrews, S. R.; Maier, S. A. Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip. Phys. Rev. A 2007, 75, 063822.
Sun, L. D.; Ni, H. B.; Liu, X. J.; Zhang, D.; Zeng, Y.; Han, X. F.; Jiang, L. Y.; Chen, H. Y.; Zhao, X. W.; Gu, Z. Z. 3D printed asymmetric nanoprobe for plasmonic nanofocusing under internal illumination. ACS Photonics 2018, 5, 4872–4879.
Mrejen, M.; Suchowski, H.; Hatakeyama, T.; Wu, C.; Feng, L.; O'Brien, K.; Wang, Y.; Zhang, X. Adiabatic elimination-based coupling control in densely packed subwavelength waveguides. Nat. Commun. 2015, 6, 7565.
Liang, B. Q.; Xu, D.; Yu, N.; Xu, Y. D.; Ma, X. Z.; Liu, Q. S.; Asif, M. S.; Yan, R. X.; Liu, M. Physics-guided neural-network-based inverse design of a photonic-plasmonic nanodevice for superfocusing. ACS Appl. Mater. Interfaces 2022, 14, 27397–27404.
Ma, X. Z.; Liu, Q. S.; Yu, N.; Xu, D.; Kim, S.; Liu, Z. B.; Jiang, K. L.; Wong, B. M.; Yan, R. X.; Liu, M. 6 nm Super-resolution optical transmission and scattering spectroscopic imaging of carbon nanotubes using a nanometer-scale white light source. Nat. Commun. 2021, 12, 6868.
Choi, H.; Pile, D. F. P.; Nam, S.; Bartal, G.; Zhang, X. Compressing surface plasmons for nano-scale optical focusing. Opt. Express 2009, 17, 7519–7524.
Gramotnev, D. K. Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach. J. Appl. Phys. 2005, 98, 104302.
Choo, H.; Kim, M. K.; Staffaroni, M.; Seok, T. J.; Bokor, J.; Cabrini, S.; Schuck, P. J.; Wu, M. C.; Yablonovitch, E. Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper. Nat. Photon. 2012, 6, 838–844.
Bao, W.; Melli, M.; Caselli, N.; Riboli, F.; Wiersma, D.; Staffaroni, M.; Choo, H.; Ogletree, D.; Aloni, S.; Bokor, J. et al. Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging. Science 2012, 338, 1317–1321.
Zhang, R.; Zhang, Y.; Dong, Z. C.; Jiang, S.; Zhang, C.; Chen, L. G.; Zhang, L.; Liao, Y.; Aizpurua, J.; Luo, Y. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 2013, 498, 82–86.
Lee, J.; Crampton, K. T.; Tallarida, N.; Apkarian, V. A. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature 2019, 568, 78–82.
He, Z.; Han, Z. H.; Kizer, M.; Linhardt, R. J.; Wang, X. Z.; Sinyukov, A. M.; Wang, J.; Deckert, V.; Sokolov, A. V.; Hu, J. et al. Tip-enhanced Raman imaging of single-stranded DNA with single base resolution. J. Am. Chem. Soc. 2019, 141, 753–757.
Neugebauer, U.; Schmid, U.; Baumann, K.; Ziebuhr, W.; Kozitskaya, S.; Deckert, V.; Schmitt, M.; Popp, J. Towards a detailed understanding of bacterial metabolism—Spectroscopic characterization of Staphylococcus epidermidis. ChemPhysChem 2007, 8, 124–137.
Paulite, M.; Blum, C.; Schmid, T.; Opilik, L.; Eyer, K.; Walker, G. C.; Zenobi, R. Full spectroscopic tip-enhanced Raman imaging of single nanotapes formed from β-amyloid (1-40) peptide fragments. ACS Nano 2013, 7, 911–920.
Pfisterer, J. H. K.; Baghernejad, M.; Giuzio, G.; Domke, K. F. Reactivity mapping of nanoscale defect chemistry under electrochemical reaction conditions. Nat. Commun. 2019, 10, 5702.
Piergies, N.; Pięta, E.; Paluszkiewicz, C.; Domin, H.; Kwiatek, W. M. Polarization effect in tip-enhanced infrared nanospectroscopy studies of the selective Y5 receptor antagonist Lu AA33810. Nano Res. 2018, 11, 4401–4411.
Li, X. P.; Liang, Z. S.; Zhang, S. D.; Wang, T. T.; Hang, W. Sub-micrometer-scale chemical analysis by nanosecond-laser-induced tip-enhanced ablation and ionization time-of-flight mass spectrometry. Nano Res. 2018, 11, 5989–5996.
Zhong, J. H.; Jin, X.; Meng, L. Y.; Wang, X.; Su, H. S.; Yang, Z. L.; Williams, C. T.; Ren, B. Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution. Nat. nanotechnol. 2017, 12, 132–136.
Carozo, V.; Almeida, C. M.; Ferreira, E. H. M.; Cançado, L. G.; Achete, C. A.; Jorio, A. Raman signature of graphene superlattices. Nano Lett. 2011, 11, 4527–4534.
Smolsky, J. M.; Krasnoslobodtsev, A. V. Nanoscopic imaging of oxidized graphene monolayer using tip-enhanced Raman scattering. Nano Res. 2018, 11, 6346–6359.
Alencar, R. S.; Rabelo, C.; Miranda, H. L. S.; Vasconcelos, T. L.; Oliveira, B. S.; Ribeiro, A.; Públio, B. C.; Ribeiro-Soares, J.; Filho, A. G. S.; Cançado, L. G. et al. Probing spatial phonon correlation length in post-transition metal monochalcogenide GaS using tip-enhanced raman spectroscopy. Nano Lett. 2019, 19, 7357–7364.
Huang, T. X.; Cong, X.; Wu, S. S.; Lin, K. Q.; Yao, X.; He, Y. H.; Wu, J. B.; Bao, Y. F.; Huang, S. C.; Wang, X. et al. Probing the edge-related properties of atomically thin MoS2 at nanoscale. Nat. Commun. 2019, 10, 5544.
Lee, C.; Jeong, B. G.; Kim, S. H.; Kim, D. H.; Yun, S. J.; Choi, W.; An, S. J.; Lee, D.; Kim, Y. M.; Kim, K. K. et al. Investigating heterogeneous defects in single-crystalline WS2 via tip-enhanced Raman spectroscopy. npj 2D Mater. Appl. 2022, 6, 67.
Gadelha, A. C.; Ohlberg, D. A. A.; Rabelo, C.; Neto, E. G. S.; Vasconcelos, T. L.; Campos, J. L.; Lemos, J. S.; Ornelas, V.; Miranda, D.; Nadas, R. et al. Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature 2021, 590, 405–409.