AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Solvent-stabilized few-layer violet phosphorus and its ultrafast nonlinear optics

Li Zhou1Jianlong Kang1Yulan Dong2Yiduo Wang1Yejun Li1Han Huang1Si Xiao1Yingwei Wang1( )Jun He1( )
Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha 410083, China
Key Laboratory of Hunan Province for Statistical Learning and Intelligent Computation, School of Mathematics and Statistics, Hunan University of Technology and Business, Changsha 410205, China
Show Author Information

Graphical Abstract

We report few-layer and hundreds of nanometers size violet phosphorus with robust stability in different solvents and ambient conditions. As prepared violet phosphorus demonstrated sub-picosecond timescale ultrafast carrier dynamic and ultrafast nonlinear saturable absorption.

Abstract

Featured with high thermal decomposition temperature and layered structure, violet phosphorus (VP) offers an unparalleled stable allotrope of phosphorus to demonstrate the optoelectronic device and photonics elements with high performance at the nanoscale. Here, we report few-layer and hundreds of nanometer-sized VP with robust stability in different solvents and ambient conditions by ultrasound-assisted liquid phase exfoliation approach. For the first time, the ultrafast carrier dynamics and third-order nonlinear optical response of VP were investigated. Sub-picosecond timescale ultrafast carrier dynamic and ultrafast nonlinear saturable absorption of VP were demonstrated. Our findings demonstrated that VP possessed a promising potential for use in ultrafast nonlinear photonic applications such as saturable absorbers and optical switches.

Electronic Supplementary Material

Download File(s)
12274_2022_5224_MOESM1_ESM.pdf (1.3 MB)
12274_2022_5224_MOESM2_ESM.pdf (338.9 KB)

References

[1]

Sun, Z. P.; Martinez, A.; Wang, F. Optical modulators with 2D layered materials. Nat. Photonics 2016, 10, 227–238.

[2]

Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899–907.

[3]

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

[4]

Eda, G.; Maier, S. A. Two-dimensional crystals: Managing light for optoelectronics. ACS Nano 2013, 7, 5660–5665.

[5]

Tielrooij, K. J.; Song, J. C. W.; Jensen, S. A.; Centeno, A.; Pesquera, A.; Zurutuza Elorza, A.; Bonn, M.; Levitov, L. S.; Koppens, F. H. L. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat. Phys. 2013, 9, 248–252.

[6]

Rodin, A.; Trushin, M.; Carvalho, A.; Castro Neto, A. H. Collective excitations in 2D materials. Nat. Rev. Phys. 2020, 2, 524–537.

[7]

Zhang, X. J.; Yuan, Z. H.; Yang, R. X.; He, Y. L.; Qin, Y. L.; Xiao, S.; He, J. A review on spatial self-phase modulation of two-dimensional materials. J. Cent. South Univ. 2019, 26, 2295–2306.

[8]

Jiang, H. H.; Su, H.; Chen, L. X.; Tan, X. W. GO-induced effective interconnection layer for all solution-processed tandem quantum dot light-emitting diodes. J. Cent. South Univ. 2021, 28, 3737–3746.

[9]

Guo, B.; Xiao, Q. L.; Wang, S. H.; Zhang, H. 2D layered materials: Synthesis, nonlinear optical properties, and device applications. Laser Photonics Rev. 2019, 13, 1800327.

[10]

Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

[11]

Pang, J. B.; Bachmatiuk, A.; Yin, Y.; Trzebicka, B.; Zhao, L.; Fu, L.; Mendes, R. G.; Gemming, T.; Liu, Z. F.; Rummeli, M. H. Applications of phosphorene and black phosphorus in energy conversion and storage devices. Adv. Energy Mater. 2018, 8, 1702093.

[12]

Liu, H.; Du, Y. C.; Deng, Y. X.; Ye, P. D. Semiconducting black phosphorus: Synthesis, transport properties, and electronic applications. Chem. Soc. Rev. 2015, 44, 2732–2743.

[13]

Pfitzner, A. Phosphorus remains exciting! Angew. Chem., Int. Ed. 2006, 45, 699–700.

[14]

Zhang, L. H.; Huang, H. Y.; Lv, Z. X.; Li, L. R.; Gu, M. Y.; Zhao, X. W.; Zhang, B.; Cheng, Y. H.; Zhang, J. Y. Phonon properties of bulk violet phosphorus single crystals: Temperature and pressure evolution. ACS Appl. Electron. Mater. 2021, 3, 1043–1049.

[15]

Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

[16]

Wu, W. Z.; Zhou, Y. J.; Wang, J.; Shao, Y. B.; Kong, D. G.; Gao, Y. C.; Wang, Y. G. The pump fluence and wavelength-dependent ultrafast carrier dynamics and optical nonlinear absorption in black phosphorus nanosheets. Nanophotonics 2020, 9, 2033–2043.

[17]

Wang, X. M.; Jones, A. M.; Seyler, K. L.; Tran, V.; Jia, Y. C.; Zhao, H.; Wang, H.; Yang, L.; Xu, X. D.; Xia, F. N. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 2015, 10, 517–521.

[18]

Guo, T.; Wu, Y.; Lin, Y.; Xu, X.; Lian, H.; Huang, G. M.; Liu, J. Z.; Wu, X. P.; Yang, H. H. Black phosphorus quantum dots with renal clearance property for efficient photodynamic therapy. Small 2018, 14, 1702815.

[19]

Liu, H. W.; Hu, K.; Yan, D. F.; Chen, R.; Zou, Y. Q.; Liu, H. B.; Wang, S. Y. Recent advances on black phosphorus for energy storage, catalysis, and sensor applications. Adv. Mater. 2018, 30, 1800295.

[20]

Dai, J.; Zeng, X. C. Bilayer phosphorene: Effect of stacking order on bandgap and its potential applications in thin-film solar cells. J. Phys. Chem. Lett. 2014, 5, 1289–1293.

[21]

Xu, Y. H.; Wang, Z. T.; Guo, Z. N.; Huang, H.; Xiao, Q. L.; Zhang, H.; Yu, X. F. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots. Adv. Opt. Mater. 2016, 4, 1223–1229.

[22]

Ni, H.; Liu, X. C.; Cheng, Q. F. A new strategy for air-stable black phosphorus reinforced PVA nanocomposites. J. Mater. Chem. A 2018, 6, 7142–7147.

[23]

Hittorf, W. Zur kenntniss des phosphors. Ann. Phys. 1865, 202, 193–228.

[24]

Zhang, L. H.; Huang, H. Y.; Zhang, B.; Gu, M. Y.; Zhao, D.; Zhao, X. W.; Li, L. R.; Zhou, J.; Wu, K.; Cheng, Y. H. et al. Structure and properties of violet phosphorus and its phosphorene exfoliation. Angew. Chem., Int. Ed. 2020, 59, 1074–1080.

[25]

Schusteritsch, G.; Uhrin, M.; Pickard, C. J. Single-layered hittorf’s phosphorus: A wide-bandgap high mobility 2D material. Nano Lett. 2016, 16, 2975–2980.

[26]

Zhang, L. H.; Li, X. B.; Yao, F. F.; Li, L. R.; Huang, H. Y.; Zhao, X. W.; Liu, S. H.; Cheng, Y. H.; Xu, H.; Zhang, J. Y. Fast identification of the crystallographic orientation of violet phosphorus nanoflakes with preferred in-plane cleavage edge orientation. Adv. Funct. Mater. 2022, 32, 2111057.

[27]

Zhang, B.; Zhang, L. H.; Wang, Z. Y.; Li, Y. F.; Cheng, Y. H.; Ma, L. F.; Zhang, J. Y. Cross structured two-dimensional violet phosphorene with extremely high deformation resistance. J. Mater. Chem. A 2021, 9, 13855–13860.

[28]

Li, Y. Y.; Cai, S. H.; Lai, W. K.; Wang, C. H.; Rogée, L.; Zhuang, L. C.; Zhai, L. L.; Lin, S. H.; Li, M. J.; Lau, S. P. Impurity-induced robust trionic effect in layered violet phosphorus. Adv. Opt. Mater. 2022, 10, 2101538.

[29]

Lin, S. H.; Lai, W. K.; Li, Y. Y.; Lu, W.; Bai, G. X.; Lau, S. P. Liquid-phase exfoliation of violet phosphorus for electronic applications. SmartMat 2021, 2, 226–233.

[30]

Swinehart, D. F. The beer-lambert law. J. Chem. Educ. 1962, 39, 333–335.

[31]

Ricciardulli, A. G.; Wang, Y.; Yang, S.; Samorì, P. Two-dimensional violet phosphorus: A p-type semiconductor for (opto)electronics. J. Am. Chem. Soc. 2022, 144, 3660–3666.

[32]

Fali, A.; Snure, M.; Abate, Y. Violet phosphorus surface chemical degradation in comparison to black phosphorus. Appl. Phys. Lett. 2021, 118, 163105.

[33]

Hanlon, D.; Backes, C.; Doherty, E.; Cucinotta, C. S.; Berner, N. C.; Boland, C.; Lee, K.; Harvey, A.; Lynch, P.; Gholamvand, Z. et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 2015, 6, 8563.

[34]

Shao, J. D.; Xie, H. H.; Huang, H.; Li, Z. B.; Sun, Z. B.; Xu, Y. H.; Xiao, Q. L.; Yu, X. F.; Zhao, Y. T.; Zhang, H. et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 2016, 7, 12967.

[35]

Ma, D. T.; Zhao, J. L.; Wang, R.; Xing, C. Y.; Li, Z. J.; Huang, W. C.; Jiang, X. T.; Guo, Z. N.; Luo, Z. Q.; Li, Y. et al. Ultrathin GeSe nanosheets: From systematic synthesis to studies of carrier dynamics and applications for a high-performance UV–vis photodetector. ACS Appl. Mater. Interfaces 2019, 11, 4278–4287.

[36]

He, J.; Qu, Y. L.; Li, H. P.; Mi, J.; Ji, W. Three-photon absorption in ZnO and ZnS crystals. Opt. Express 2005, 13, 9235–9247.

Nano Research
Pages 5843-5849
Cite this article:
Zhou L, Kang J, Dong Y, et al. Solvent-stabilized few-layer violet phosphorus and its ultrafast nonlinear optics. Nano Research, 2023, 16(4): 5843-5849. https://doi.org/10.1007/s12274-022-5224-3
Topics:

2867

Views

18

Crossref

18

Web of Science

16

Scopus

0

CSCD

Altmetrics

Received: 24 July 2022
Revised: 18 October 2022
Accepted: 19 October 2022
Published: 13 December 2022
© Tsinghua University Press 2022
Return