Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Uncontrollable bleeding and bacterial infections are the major reasons for the high mortality of post-traumatic. In this study, a composite hemostatic chitosan sponge CaO2@SiO2/CS was prepared by combining a novel core–shell inorganic nano hemostatic CaO2@SiO2 nanoparticles with carboxylated chitosan, which presents a multi-layered structure with a rough and hydrophilic surface for rapid absorption of blood. When the CaO2@SiO2 nanoparticles in the CaO2@SiO2/CS come into contact with blood, the silanol group on its surface and the released H2O2 and Ca2+ can recruit and activate platelets, while generating fibrin clots and activating the endo-exogenous coagulation cascade reaction to achieve rapid clotting. The H2O2 released from CaO2@SiO2 shows the antimicrobial capacity and stimulates the production of tissue factors by endothelial cells. Meanwhile, the silica coating reduces the cytotoxicity of bare CaO2, thus reducing the risk of secondary bleeding at the site of vascular injury. CaO2@SiO2/CS (48 s) showed a 1.83- and 2.52-fold reduction in hemostasis time compared to commercial gelfoam and CS in a femoral artery hemorrhage model. This study illustrates the hemostatic mechanism of CaO2@SiO2 and provides a reference for the development of clinical biomedical inorganic hemostatic materials.
Gruen, R. L.; Brohi, K.; Schreiber, M.; Balogh, Z. J.; Pitt, V.; Narayan, M.; Maier, R. V. Haemorrhage control in severely injured patients. Lancet 2012, 380, 1099–1108.
Cannon, J. W. Hemorrhagic shock. N. Engl. J. Med. 2018, 378, 370–379.
Hickman, D. A.; Pawlowski, C. L.; Sekhon, U. D. S.; Marks, J.; Gupta, A. S. Biomaterials and advanced technologies for hemostatic management of bleeding. Adv. Mater. 2018, 30, 1700859.
Jamal, L.; Saini, A.; Quencer, K.; Altun, I.; Albadawi, H.; Khurana, A.; Naidu, S.; Patel, I.; Alzubaidi, S.; Oklu, R. Emerging approaches to pre-hospital hemorrhage control: A narrative review. Ann. Transl. Med. 2021, 9, 1192.
Li, Z.; Milionis, A.; Zheng, Y.; Yee, M.; Codispoti, L.; Tan, F.; Poulikakos, D.; Yap, C. H. Superhydrophobic hemostatic nanofiber composites for fast clotting and minimal adhesion. Nat. Commun. 2019, 10, 5562.
Zhong, Y. T.; Hu, H. Y.; Min, N. N.; Wei, Y. F.; Li, X. D.; Li, X. R. Application and outlook of topical hemostatic materials: A narrative review. Ann. Transl. Med. 2021, 9, 577.
Wang, L. Y.; You, X. R.; Dai, C. L.; Tong, T.; Wu, J. Hemostatic nanotechnologies for external and internal hemorrhage management. Biomater. Sci. 2020, 8, 4396–4412.
Yang, X.; Liu, W.; Li, N.; Wang, M. S.; Liang, B.; Ullah, I.; Luis Neve, A.; Feng, Y. K.; Chen, H.; Shi, C. C. Design and development of polysaccharide hemostatic materials and their hemostatic mechanism. Biomater. Sci. 2017, 5, 2357–2368.
Pinkas, O.; Zilberman, M. Effect of hemostatic agents on properties of gelatin-alginate soft tissue adhesives. J. Biomater. Sci. Polym. Ed. 2014, 25, 555–573.
Pourshahrestani, S.; Zeimaran, E.; Djordjevic, I.; Kadri, N. A.; Towler, M. R. Inorganic hemostats: The state-of-the-art and recent advances. Mater. Sci. Eng. C 2016, 58, 1255–1268.
Ding, S.; Wei, X. H.; Yang, K.; Lin, S.; Tian, F.; Li, F. Ca-Ga double doping strategy to fabricate hemostatic mesoporous silica nanoparticles (MSN) with antibacterial activity. Silicon 2021, 13, 4033–4045.
Chen, Z. H.; Han, L.; Liu, C. J.; Du, Y.; Hu, X.; Du, G.; Shan, C.; Yang, K.; Wang, C. L.; Li, M. G. et al. A rapid hemostatic sponge based on large, mesoporous silica nanoparticles and N-alkylated chitosan. Nanoscale 2018, 10, 20234–20245.
Meddahi-Pellé, A.; Legrand, A.; Marcellan, A.; Louedec, L.; Letourneur, D.; Leibler, L. Organ repair, hemostasis, and in vivo bonding of medical devices by aqueous solutions of nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 6369–6373.
Li, Q.; Hu, E. L.; Yu, K.; Lu, M. X.; Xie, R. Q.; Lu, F.; Lu, B. T.; Bao, R.; Lan, G. Q. Magnetic field-mediated Janus particles with sustained driving capability for severe bleeding control in perforating and inflected wounds. Bioact. Mater. 2021, 6, 4625–4639.
Tavakoli, S.; Kharaziha, M.; Nemati, S. Polydopamine coated ZnO rod-shaped nanoparticles with noticeable biocompatibility, hemostatic and antibacterial activity. Nano-Struct. Nano-Objects 2021, 25, 100639.
Rao, K. M.; Suneetha, M.; Park, G. T.; Babu, A. G.; Han, S. S. Hemostatic, biocompatible, and antibacterial non-animal fungal mushroom-based carboxymethyl chitosan-ZnO nanocomposite for wound-healing applications. Int. J. Biol. Macromol. 2020, 155, 71–80.
Venkataprasanna, K. S.; Prakash, J.; Vignesh, S.; Bharath, G.; Venkatesan, M.; Banat, F.; Sahabudeen, S.; Ramachandran, S.; Devanand Venkatasubbu, G. Fabrication of chitosan/PVA/GO/CuO patch for potential wound healing application. Int. J. Biol. Macromol. 2020, 143, 744–762.
Hyde, G. K.; Stewart, S. M.; Scarel, G.; Parsons, G. N.; Shih, C. C.; Shih, C. M.; Lin, S. J.; Su, Y. Y.; Monteiro-Riviere, N. A.; Narayan, R. J. Atomic layer deposition of titanium dioxide on cellulose acetate for enhanced hemostasis. Biotechnol. J. 2011, 6, 213–223.
Gaston, E.; Fraser, J. F.; Xu, Z. P.; Ta, H. T. Nano- and micro-materials in the treatment of internal bleeding and uncontrolled hemorrhage. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 507–519.
Singh, S.; Dodt, J.; Volkers, P.; Hethershaw, E.; Philippou, H.; Ivaskevicius, V.; Imhof, D.; Oldenburg, J.; Biswas, A. Structure functional insights into calcium binding during the activation of coagulation factor XIII A. Sci. Rep. 2019, 9, 11324.
Palta, S.; Saroa, R.; Palta, A. Overview of the coagulation system. Indian. J. Anaesth. 2014, 58, 515–523.
Pignatelli, P.; Pulcinelli, F. M.; Lenti, L.; Gazzaniga, P. P.; Violi, F. Hydrogen peroxide is involved in collagen-induced platelet activation. Blood 1998, 91, 484–490.
Sen, C. K.; Roy, S. Redox signals in wound healing. Biochim. Biophys. Acta Gen. Subj. 2008, 1780, 1348–1361.
Kong, L.; Chen, C. R.; Mou, F. Z.; Feng, Y. Z.; You, M.; Yin, Y. X.; Guan, J. G. Magnesium particles coated with mesoporous nanoshells as sustainable therapeutic-hydrogen suppliers to scavenge continuously generated hydroxyl radicals in long term. Part. Part. Syst. Charact. 2019, 36, 1800424.
Shen, S.; Mamat, M.; Zhang, S. C.; Cao, J.; Hood, Z. D.; Figueroa-Cosme, L.; Xia, Y. N. Synthesis of CaO2 nanocrystals and their spherical aggregates with uniform sizes for use as a biodegradable bacteriostatic agent. Small 2019, 15, 1902118.
Liang, Y. J.; Ouyang, J.; Wang, H. Y.; Wang, W. L.; Chui, P. F.; Sun, K. N. Synthesis and characterization of core–shell structured SiO2@YVO4: Yb3+, Er3+ microspheres. Appl. Surf. Sci. 2012, 258, 3689–3694.
Rastinfard, A.; Nazarpak, M. H.; Moztarzadeh, F. Controlled chemical synthesis of CaO2 particles coated with polyethylene glycol: Characterization of crystallite size and oxygen release kinetics. RSC Adv. 2018, 8, 91–101.
Fröhlich, E. Action of nanoparticles on platelet activation and plasmatic coagulation. Curr. Med. Chem. 2016, 23, 408–430.
Zhu, G.; Wang, Q.; Lu, S.; Niu, Y. Hydrogen peroxide: A potential wound therapeutic target? Med. Princ. Pract. 2017, 26, 301–308.
Hou, Y.; Carrim, N.; Wang, Y. M.; Gallant, R. C.; Marshall, A.; Ni, H. Y. Platelets in hemostasis and thrombosis: Novel mechanisms of fibrinogen-independent platelet aggregation and fibronectin-mediated protein wave of hemostasis. J. Biomed. Res. 2015, 29, 437–444.
Kattula, S.; Byrnes, J. R.; Wolberg, A. S. Fibrinogen and fibrin in hemostasis and thrombosis. Arterioscler. Thromb. Vasc. Biol. 2017, 37, e13–e21.
Gryshchuk, V.; Galagan, N. Silica nanoparticles effects on blood coagulation proteins and platelets. Biochem. Res. Int. 2016, 2016, 2959414.
Wang, K.; Albert, K.; Mosser, G.; Haye, B.; Percot, A.; Paris, C.; Peccate, C.; Trichet, L.; Coradin, T. Self-assembly/condensation interplay in nano-to-microfibrillar silicified fibrin hydrogels. Int. J. Biol. Macromol. 2020, 164, 1422–1431.