AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A bioactive nanocomposite sponge for simultaneous hemostasis and antimicrobial therapy

Jiani Lei1,§Shanshan Li1,§Shuang Liu1Qingyuan Wu1Bolong Xu1Zhijun Huang2Nier Wu3Xiaolu Xiong3Huiyu Liu1( )Dongsheng Zhou3( )
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic–Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
Beijing National Laboratory of Molecular Sciences, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China

§ Jiani Lei and Shanshan Li contributed equally to this work.

Show Author Information

Graphical Abstract

A composite hemostatic chitosan sponge CaO2@SiO2/CS is reported for hemostasis and antibacterial and the hemostatic mechanism is revealed. Compared to commercial gelfoam and CS, CaO2@SiO2/CS showed a 1.83- and 2.52-fold reduction in hemostasis time in the hemorrhage model.

Abstract

Uncontrollable bleeding and bacterial infections are the major reasons for the high mortality of post-traumatic. In this study, a composite hemostatic chitosan sponge CaO2@SiO2/CS was prepared by combining a novel core–shell inorganic nano hemostatic CaO2@SiO2 nanoparticles with carboxylated chitosan, which presents a multi-layered structure with a rough and hydrophilic surface for rapid absorption of blood. When the CaO2@SiO2 nanoparticles in the CaO2@SiO2/CS come into contact with blood, the silanol group on its surface and the released H2O2 and Ca2+ can recruit and activate platelets, while generating fibrin clots and activating the endo-exogenous coagulation cascade reaction to achieve rapid clotting. The H2O2 released from CaO2@SiO2 shows the antimicrobial capacity and stimulates the production of tissue factors by endothelial cells. Meanwhile, the silica coating reduces the cytotoxicity of bare CaO2, thus reducing the risk of secondary bleeding at the site of vascular injury. CaO2@SiO2/CS (48 s) showed a 1.83- and 2.52-fold reduction in hemostasis time compared to commercial gelfoam and CS in a femoral artery hemorrhage model. This study illustrates the hemostatic mechanism of CaO2@SiO2 and provides a reference for the development of clinical biomedical inorganic hemostatic materials.

Electronic Supplementary Material

Download File(s)
12274_2022_5226_MOESM1_ESM.pdf (2.4 MB)

References

[1]

Gruen, R. L.; Brohi, K.; Schreiber, M.; Balogh, Z. J.; Pitt, V.; Narayan, M.; Maier, R. V. Haemorrhage control in severely injured patients. Lancet 2012, 380, 1099–1108.

[2]

Cannon, J. W. Hemorrhagic shock. N. Engl. J. Med. 2018, 378, 370–379.

[3]

Hickman, D. A.; Pawlowski, C. L.; Sekhon, U. D. S.; Marks, J.; Gupta, A. S. Biomaterials and advanced technologies for hemostatic management of bleeding. Adv. Mater. 2018, 30, 1700859.

[4]

Jamal, L.; Saini, A.; Quencer, K.; Altun, I.; Albadawi, H.; Khurana, A.; Naidu, S.; Patel, I.; Alzubaidi, S.; Oklu, R. Emerging approaches to pre-hospital hemorrhage control: A narrative review. Ann. Transl. Med. 2021, 9, 1192.

[5]

Li, Z.; Milionis, A.; Zheng, Y.; Yee, M.; Codispoti, L.; Tan, F.; Poulikakos, D.; Yap, C. H. Superhydrophobic hemostatic nanofiber composites for fast clotting and minimal adhesion. Nat. Commun. 2019, 10, 5562.

[6]

Zhong, Y. T.; Hu, H. Y.; Min, N. N.; Wei, Y. F.; Li, X. D.; Li, X. R. Application and outlook of topical hemostatic materials: A narrative review. Ann. Transl. Med. 2021, 9, 577.

[7]

Wang, L. Y.; You, X. R.; Dai, C. L.; Tong, T.; Wu, J. Hemostatic nanotechnologies for external and internal hemorrhage management. Biomater. Sci. 2020, 8, 4396–4412.

[8]

Yang, X.; Liu, W.; Li, N.; Wang, M. S.; Liang, B.; Ullah, I.; Luis Neve, A.; Feng, Y. K.; Chen, H.; Shi, C. C. Design and development of polysaccharide hemostatic materials and their hemostatic mechanism. Biomater. Sci. 2017, 5, 2357–2368.

[9]

Pinkas, O.; Zilberman, M. Effect of hemostatic agents on properties of gelatin-alginate soft tissue adhesives. J. Biomater. Sci. Polym. Ed. 2014, 25, 555–573.

[10]

Pourshahrestani, S.; Zeimaran, E.; Djordjevic, I.; Kadri, N. A.; Towler, M. R. Inorganic hemostats: The state-of-the-art and recent advances. Mater. Sci. Eng. C 2016, 58, 1255–1268.

[11]

Ding, S.; Wei, X. H.; Yang, K.; Lin, S.; Tian, F.; Li, F. Ca-Ga double doping strategy to fabricate hemostatic mesoporous silica nanoparticles (MSN) with antibacterial activity. Silicon 2021, 13, 4033–4045.

[12]

Chen, Z. H.; Han, L.; Liu, C. J.; Du, Y.; Hu, X.; Du, G.; Shan, C.; Yang, K.; Wang, C. L.; Li, M. G. et al. A rapid hemostatic sponge based on large, mesoporous silica nanoparticles and N-alkylated chitosan. Nanoscale 2018, 10, 20234–20245.

[13]

Meddahi-Pellé, A.; Legrand, A.; Marcellan, A.; Louedec, L.; Letourneur, D.; Leibler, L. Organ repair, hemostasis, and in vivo bonding of medical devices by aqueous solutions of nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 6369–6373.

[14]

Li, Q.; Hu, E. L.; Yu, K.; Lu, M. X.; Xie, R. Q.; Lu, F.; Lu, B. T.; Bao, R.; Lan, G. Q. Magnetic field-mediated Janus particles with sustained driving capability for severe bleeding control in perforating and inflected wounds. Bioact. Mater. 2021, 6, 4625–4639.

[15]

Tavakoli, S.; Kharaziha, M.; Nemati, S. Polydopamine coated ZnO rod-shaped nanoparticles with noticeable biocompatibility, hemostatic and antibacterial activity. Nano-Struct. Nano-Objects 2021, 25, 100639.

[16]

Rao, K. M.; Suneetha, M.; Park, G. T.; Babu, A. G.; Han, S. S. Hemostatic, biocompatible, and antibacterial non-animal fungal mushroom-based carboxymethyl chitosan-ZnO nanocomposite for wound-healing applications. Int. J. Biol. Macromol. 2020, 155, 71–80.

[17]

Venkataprasanna, K. S.; Prakash, J.; Vignesh, S.; Bharath, G.; Venkatesan, M.; Banat, F.; Sahabudeen, S.; Ramachandran, S.; Devanand Venkatasubbu, G. Fabrication of chitosan/PVA/GO/CuO patch for potential wound healing application. Int. J. Biol. Macromol. 2020, 143, 744–762.

[18]

Hyde, G. K.; Stewart, S. M.; Scarel, G.; Parsons, G. N.; Shih, C. C.; Shih, C. M.; Lin, S. J.; Su, Y. Y.; Monteiro-Riviere, N. A.; Narayan, R. J. Atomic layer deposition of titanium dioxide on cellulose acetate for enhanced hemostasis. Biotechnol. J. 2011, 6, 213–223.

[19]

Gaston, E.; Fraser, J. F.; Xu, Z. P.; Ta, H. T. Nano- and micro-materials in the treatment of internal bleeding and uncontrolled hemorrhage. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 507–519.

[20]

Singh, S.; Dodt, J.; Volkers, P.; Hethershaw, E.; Philippou, H.; Ivaskevicius, V.; Imhof, D.; Oldenburg, J.; Biswas, A. Structure functional insights into calcium binding during the activation of coagulation factor XIII A. Sci. Rep. 2019, 9, 11324.

[21]

Palta, S.; Saroa, R.; Palta, A. Overview of the coagulation system. Indian. J. Anaesth. 2014, 58, 515–523.

[22]

Pignatelli, P.; Pulcinelli, F. M.; Lenti, L.; Gazzaniga, P. P.; Violi, F. Hydrogen peroxide is involved in collagen-induced platelet activation. Blood 1998, 91, 484–490.

[23]

Sen, C. K.; Roy, S. Redox signals in wound healing. Biochim. Biophys. Acta Gen. Subj. 2008, 1780, 1348–1361.

[24]

Kong, L.; Chen, C. R.; Mou, F. Z.; Feng, Y. Z.; You, M.; Yin, Y. X.; Guan, J. G. Magnesium particles coated with mesoporous nanoshells as sustainable therapeutic-hydrogen suppliers to scavenge continuously generated hydroxyl radicals in long term. Part. Part. Syst. Charact. 2019, 36, 1800424.

[25]

Shen, S.; Mamat, M.; Zhang, S. C.; Cao, J.; Hood, Z. D.; Figueroa-Cosme, L.; Xia, Y. N. Synthesis of CaO2 nanocrystals and their spherical aggregates with uniform sizes for use as a biodegradable bacteriostatic agent. Small 2019, 15, 1902118.

[26]

Liang, Y. J.; Ouyang, J.; Wang, H. Y.; Wang, W. L.; Chui, P. F.; Sun, K. N. Synthesis and characterization of core–shell structured SiO2@YVO4: Yb3+, Er3+ microspheres. Appl. Surf. Sci. 2012, 258, 3689–3694.

[27]

Rastinfard, A.; Nazarpak, M. H.; Moztarzadeh, F. Controlled chemical synthesis of CaO2 particles coated with polyethylene glycol: Characterization of crystallite size and oxygen release kinetics. RSC Adv. 2018, 8, 91–101.

[28]

Fröhlich, E. Action of nanoparticles on platelet activation and plasmatic coagulation. Curr. Med. Chem. 2016, 23, 408–430.

[29]

Zhu, G.; Wang, Q.; Lu, S.; Niu, Y. Hydrogen peroxide: A potential wound therapeutic target? Med. Princ. Pract. 2017, 26, 301–308.

[30]

Hou, Y.; Carrim, N.; Wang, Y. M.; Gallant, R. C.; Marshall, A.; Ni, H. Y. Platelets in hemostasis and thrombosis: Novel mechanisms of fibrinogen-independent platelet aggregation and fibronectin-mediated protein wave of hemostasis. J. Biomed. Res. 2015, 29, 437–444.

[31]

Kattula, S.; Byrnes, J. R.; Wolberg, A. S. Fibrinogen and fibrin in hemostasis and thrombosis. Arterioscler. Thromb. Vasc. Biol. 2017, 37, e13–e21.

[32]

Gryshchuk, V.; Galagan, N. Silica nanoparticles effects on blood coagulation proteins and platelets. Biochem. Res. Int. 2016, 2016, 2959414.

[33]

Wang, K.; Albert, K.; Mosser, G.; Haye, B.; Percot, A.; Paris, C.; Peccate, C.; Trichet, L.; Coradin, T. Self-assembly/condensation interplay in nano-to-microfibrillar silicified fibrin hydrogels. Int. J. Biol. Macromol. 2020, 164, 1422–1431.

Nano Research
Pages 4004-4012
Cite this article:
Lei J, Li S, Liu S, et al. A bioactive nanocomposite sponge for simultaneous hemostasis and antimicrobial therapy. Nano Research, 2023, 16(3): 4004-4012. https://doi.org/10.1007/s12274-022-5226-1
Topics:
Part of a topical collection:

8673

Views

9

Crossref

9

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 15 August 2022
Revised: 10 October 2022
Accepted: 19 October 2022
Published: 07 December 2022
© Tsinghua University Press 2022
Return