AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultrathin oxygen-containing graphdiyne wrapping CoP for enhanced electrocatalytic hydrogen generation

Yan Lv1Xueyan Wu1Hao Li1Hongbo Zhang1Jiaxin Li1Zhiyou Zhou2Jixi Guo1( )Dianzeng Jia1( )
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830017, China
State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
Show Author Information

Graphical Abstract

A novel-chainmail catalyst of ultrathin oxygen-containing graphdiyne wrapping CoP is prepared via an oxidation-exfoliation-reduction strategy. The activity and stability of CoP for HER in acid-base electrolytes are enhanced simultaneously due to the large electrochemical active area, strong electronic interaction, hydrophily, and the chainmail’s protection.

Abstract

Graphdiyne (GDY) is fascinating in the construction of efficient and stable catalysts, but their performance is still somewhat restricted due to GDY’s thicker layers, as well as hydrophobic and relatively chemically inert surfaces. Herein, via oxidation-exfoliation-reduction strategy, the self-supported electrode material of CoP nanosheets with ultrathin oxygen-containing GDY wrapping (CoP@RGDYO) for effective HER is constructed. The wrapping of ultrathin oxygen-containing GDY promotes charge transfer, improves the surface property, and enhances the acid and alkali resistance as well as the structural stability of the catalyst. As a result, CoP@RGDYO shows enhanced activity and stability in both acidic and alkaline media. Especially, it exhibits a low overpotential of 86 mV and exceptional stability under a 14000-cycle cyclic voltammetry scanning in alkaline media. This work provides new ideas for the design of GDY hybrid materials and the preparation of high-efficiency catalysts.

Electronic Supplementary Material

Download File(s)
12274_2022_5228_MOESM1_ESM.pdf (3.6 MB)

References

[1]

Dawson, J. K. Prospects for hydrogen as an energy resource. Nature 1974, 249, 724–726.

[2]

Esposito, D. V.; Hunt, S. T.; Kimmel, Y. C.; Chen, J. G. A new class of electrocatalysts for hydrogen production from water electrolysis: Metal monolayers supported on low-cost transition metal carbides. J. Am. Chem. Soc. 2012, 134, 3025–3033.

[3]

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

[4]

Zhou, Q. W.; Shen, Z. H.; Zhu, C.; Li, J. C.; Ding, Z. Y.; Wang, P.; Pan, F.; Zhang, Z. Y.; Ma, H. X.; Wang, S. Y. et al. Nitrogen-doped CoP electrocatalysts for coupled hydrogen evolution and sulfur generation with low energy consumption. Adv. Mater. 2018, 30, 1800140.

[5]

Pan, Y.; Sun, K. A.; Liu, S. J.; Cao, X.; Wu, K. L.; Cheong, W. C.; Chen, Z.; Wang, Y.; Li, Y.; Liu, Y. Q. et al. Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 2018, 140, 2610–2618.

[6]

Zhou, M.; Weng, Q. H.; Popov, Z. I.; Yang, Y. J.; Antipina, L. Y.; Sorokin, P. B.; Wang, X.; Bando, Y.; Golberg, D. Construction of polarized carbon-nickel catalytic surfaces for potent, durable, and economic hydrogen evolution reactions. ACS Nano 2018, 12, 4148–4155.

[7]

Deng, J.; Deng, D. H.; Bao, X. H. Robust catalysis on 2D materials encapsulating metals: Concept, application, and perspective. Adv. Mater. 2017, 29, 1606967.

[8]

Wang, C.; Li, W.; Wang, X. D.; Yu, N.; Sun, H. X.; Geng, B. Y. Open N-doped carbon coated porous molybdenum phosphide nanorods for synergistic catalytic hydrogen evolution reaction. Nano Res. 2022, 15, 1824–1830.

[9]
Wang, B.; Srinivas, K.; Liu, Y. F.; Liu, D. W.; Zhang, X. J.; Zhang, W. L.; Chen, Y. F. N-doped CNTs capped with carbon layer armored CoFe alloy as highly stable bifunctional catalyst for oxygen electrocatalysis. Nano Res. 2022, 15, 3971–3979.
[10]

Yu, L.; Deng, D. H.; Bao, X. H. Chain mail for catalysts. Angew. Chem., Int. Ed. 2020, 59, 15294–15297.

[11]

Yoo, J. M.; Shin, H.; Chung, D. Y.; Sung, Y. E. Carbon shell on active nanocatalyst for stable electrocatalysis. Acc. Chem. Res. 2022, 55, 1278–1289.

[12]

Tang, L.; Meng, X. G.; Deng, D. H.; Bao, X. H. Confinement catalysis with 2D materials for energy conversion. Adv. Mater. 2019, 31, 1901996.

[13]

Zhu, G. H.; Yang, H. Y.; Jiang, Y.; Sun, Z. Q.; Li, X. P.; Yang, J. P.; Wang, H. F.; Zou, R. J.; Jiang, W.; Qiu, P. P. et al. Modulating the electronic structure of FeCo nanoparticles in N-Doped mesoporous carbon for efficient oxygen reduction reaction. Adv. Sci. 2022, 9, 2200394.

[14]

Peng, Z. K.; Wang, H. Y.; Zhou, L. L.; Wang, Y. B.; Gao, J.; Liu, G. J.; Redfern, S. A. T.; Feng, X. L.; Lu, S. Y.; Li, B. J. et al. Hollow carbon shells enhanced by confined ruthenium as cost-efficient and superior catalysts for the alkaline hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 6676–6685.

[15]

Deng, J.; Ren, P. J.; Deng, D. H.; Bao, X. H. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 2100–2104.

[16]

Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256–3258.

[17]

Fang, Y.; Liu, Y. X.; Qi, L.; Xue, Y. R.; Li, Y. L. 2D graphdiyne: An emerging carbon material. Chem. Soc. Rev. 2022, 51, 2681–2709.

[18]

Chang, Y. B.; Zhang, C.; Lu, X. L.; Zhang, W.; Lu, T. B. Graphdiyene enables ultrafine Cu nanoparticles to selectively reduce CO2 to C2+ products. Nano Res. 2022, 15, 195–201.

[19]

Lu, T. T.; Wang, H. Graphdiyne-supported metal electrocatalysts: From nanoparticles and cluster to single atoms. Nano Res. 2022, 15, 9764–9778.

[20]

Hui, L.; Xue, Y. R.; He, F.; Jia, D. Z.; Li, Y. L. Efficient hydrogen generation on graphdiyne-based heterostructure. Nano Energy 2019, 55, 135–142.

[21]

Yu, H. D.; Xue, Y. R.; Hui, L.; He, F.; Zhang, C.; Liu, Y. X.; Fang, Y.; Xing, C. Y.; Li, Y. J.; Liu, H. B. et al. Graphdiyne-engineered heterostructures for efficient overall water-splitting. Nano Energy 2019, 64, 103928.

[22]
Fang, Y.; Xue, Y. R.; Hui, L.; Yu, H. D.; Liu, Y. X.; Xing, C. Y.; Lu, F. S.; He, F.; Liu, H. B.; Li, Y. L. In situ growth of graphdiyne based heterostructure: Toward efficient overall water splitting. Nano Energy 2019, 59, 591–597.
[23]

Hui, L.; Jia, D. Z.; Yu, H. D.; Xue, Y. R.; Li, Y. L. Ultrathin graphdiyne-wrapped iron carbonate hydroxide nanosheets toward efficient water splitting. ACS Appl. Mater. Interfaces 2019, 11, 2618–2625.

[24]

Fang, Y.; Xue, Y. R.; Li, Y. J.; Yu, H. D.; Hui, L.; Liu, Y. X.; Xing, C. Y.; Zhang, C.; Zhang, D. Y.; Wang, Z. Q. et al. Graphdiyne interface engineering: Highly active and selective ammonia synthesis. Angew. Chem., Int. Ed. 2020, 59, 13021–13027.

[25]

Zhou, J. Y.; Gao, X.; Liu, R.; Xie, Z. Q.; Yang, J.; Zhang, S. Q.; Zhang, G. M.; Liu, H. B.; Li, Y. L.; Zhang, J. et al. Synthesis of graphdiyne nanowalls using acetylenic coupling reaction. J. Am. Chem. Soc. 2015, 137, 7596–7599.

[26]

Jiang, W.; Zhang, Z.; Wang, Q.; Dou, J. X.; Zhao, Y. Y.; Ma, Y. C.; Liu, H. R.; Xu, H. X.; Wang, Y. C. Tumor reoxygenation and blood perfusion enhanced photodynamic therapy using ultrathin graphdiyne oxide nanosheets. Nano Lett. 2019, 19, 4060–4067.

[27]

Yan, H. L.; Guo, S. Y.; Wu, F.; Yu, P.; Liu, H. B.; Li, Y. L.; Mao, L. Q. Carbon atom hybridization matters: Ultrafast humidity response of graphdiyne oxides. Angew. Chem., Int. Ed. 2018, 57, 3922–3926.

[28]

Guo, M. Y.; Zhao, L. N.; Liu, J.; Wang, X. F.; Yao, H. D.; Chang, X. L.; Liu, Y.; Liu, J. M.; You, M.; Ren, J. Y. et al. The underlying function and structural organization of the intracellular protein corona on graphdiyne oxide nanosheet for local immunomodulation. Nano Lett. 2021, 21, 6005–6013.

[29]

Yan, H. L.; Yu, P.; Han, G. C.; Zhang, Q. H.; Gu, L.; Yi, Y. P.; Liu, H. B.; Li, Y. L.; Mao, L. Q. High-yield and damage-free exfoliation of layered graphdiyne in aqueous phase. Angew. Chem., Int. Ed. 2019, 58, 746–750.

[30]

Liu, C. B.; Wang, K.; Luo, S. L.; Tang, Y. H.; Chen, L. Y. Direct electrodeposition of graphene enabling the one-step synthesis of graphene-metal nanocomposite films. Small 2011, 7, 1203–1206.

[31]

Wang, W. D.; Zhang, P. P.; Gao, S. Q.; Wang, B. Q.; Wang, X. C.; Li, M.; Liu, F.; Cheng, J. P. Core-shell nanowires of NiCo2O4@α-Co(OH)2 on Ni foam with enhanced performances for supercapacitors. J. Colloid Interface Sci. 2020, 579, 71–81.

[32]

Ji, L. L.; Wang, J. Y.; Teng, X.; Meyer, T. J.; Chen, Z. F. CoP nanoframes as bifunctional electrocatalysts for efficient overall water splitting. ACS Catal. 2020, 10, 412–419.

[33]

Zhou, G. Y.; Li, M.; Li, Y. L.; Dong, H.; Sun, D. M.; Liu, X. E.; Xu, L.; Tian, Z. Q.; Tang, Y. W. Regulating the electronic structure of CoP nanosheets by O incorporation for high-efficiency electrochemical overall water splitting. Adv. Funct. Mater. 2020, 30, 1905252.

[34]

Liu, X. Q.; Yang, J. B.; Zhao, W.; Wang, Y.; Li, Z.; Lin, Z. Q. A simple route to reduced graphene oxide-draped nanocomposites with markedly enhanced visible-light photocatalytic performance. Small 2016, 12, 4077–4085.

[35]

Bao, H. H.; Wang, L.; Li, C.; Luo, J. Structural characterization and identification of graphdiyne and graphdiyne-based materials. ACS Appl. Mater. Interfaces 2019, 11, 2717–2729.

[36]

Lv, Y.; Wu, X. Y.; Jia, W.; Guo, J. X.; Zhang, H. B.; Liu, H. B.; Jia, D. Z.; Tong, F. L. Graphdiyne-anchored ultrafine NiFe hydroxide nanodots electrocatalyst for water oxidation with high mass activity and superior durability. Carbon 2020, 169, 45–54.

[37]

Lv, Y.; Wu, X. Y.; Lin, H.; Li, J. X.; Zhang, H. B.; Guo, J. X.; Jia, D. Z.; Zhang, H. M. A novel carbon support: Few-layered graphdiyne-decorated carbon nanotubes capture metal clusters as effective metal-supported catalysts. Small 2021, 17, 2006442.

[38]

Guo, S. Y.; Yan, H. L.; Wu, F.; Zhao, L. J.; Yu, P.; Liu, H. B.; Li, Y. L.; Mao, L. Q. Graphdiyne as electrode material: Tuning electronic state and surface chemistry for improved electrode reactivity. Anal. Chem. 2017, 89, 13008–13015.

[39]

Chai, L. L.; Hu, Z. Y.; Wang, X.; Xu, Y. W.; Zhang, L. J.; Li, T. T.; Hu, Y.; Qian, J. J.; Huang, S. M. Stringing bimetallic metal-organic framework-derived cobalt phosphide composite for high-efficiency overall water splitting. Adv. Sci. 2020, 7, 1903195.

[40]

Deng, J.; Ren, P. J.; Deng, D. H.; Bao, X. H. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 2100–2104.

[41]

Wang, X. X.; Na, Z.; Yin, D. M.; Wang, C. L.; Wu, Y. M.; Huang, G.; Wang, L. M. Phytic acid-assisted formation of hierarchical porous CoP/C nanoboxes for enhanced lithium storage and hydrogen generation. ACS Nano 2018, 12, 12238–12246.

[42]

Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590.

[43]

Li, J.; Gao, X.; Li, Z. Z.; Wang, J. H.; Zhu, L.; Yin, C.; Wang, Y.; Li, X. B.; Liu, Z. F.; Zhang J. et al. Superhydrophilic graphdiyne accelerates interfacial mass/electron transportation to boost electrocatalytic and photoelectrocatalytic water oxidation activity. Adv. Funct. Mater. 2019, 29, 1808079.

Nano Research
Pages 5073-5079
Cite this article:
Lv Y, Wu X, Li H, et al. Ultrathin oxygen-containing graphdiyne wrapping CoP for enhanced electrocatalytic hydrogen generation. Nano Research, 2023, 16(4): 5073-5079. https://doi.org/10.1007/s12274-022-5228-z
Topics:

5106

Views

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 09 September 2022
Revised: 07 October 2022
Accepted: 19 October 2022
Published: 30 November 2022
© Tsinghua University Press 2022
Return