Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Long-chain α-olefins have a high added value as important raw materials for many highly marketable products. Fishcher–Tropsch synthesis products contain ultrahigh-content α-olefins, which are of great value if the challenging separation of α-olefin/paraffin is achieved through energy-saving ways, for which adsorption separation is an attractive technology. One of the most significant differences between the adsorption separation of long-chain and light hydrocarbons is the steric hindrance of the molecular chain. Herein, we propose a combination of window size, metal node spacing, and bending degree to quantitatively describe the adsorption cavity structure for the separation of long-chain α-olefin/paraffin. The general cavity structural characteristics of microporous materials with good separation performance for long-chain α-olefin/paraffin are revealed. The selective adsorption of liquid C6 and C8 α-olefin/paraffin mixtures on CuBTC (BTC = benzene-1,3,5-tricarboxylate) was studied in detail to reveal the influence of the cavity structure on the adsorption and interaction using a combination of batch adsorption experiments and molecular simulation techniques. CuBTC exhibited 360 and 366 mg/g olefin adsorption capacities for C6 and C8 linear α-olefins, respectively. The adsorption energies were −0.540 and −0.338 eV for C8 linear α-olefin and paraffin, respectively. The contributions of different types of interactions to the overall adsorption energy were quantified to illustrate the adsorption energy difference between α-olefin/paraffin and CuBTC. This work provides a new understanding of the long-chain hydrocarbon adsorption behavior different from ethylene/ethane and propylene/propane, which guides the design of adsorbents for α-olefin/paraffin separation.
Gollwitzer, A.; Dietel, T.; Kretschmer, W. P.; Kempe, R. A broadly tunable synthesis of linear α-olefins. Nat. Commun. 2017, 8, 1226.
Golub, F. S.; Bolotov, V. A.; Parmon, V. N. Modern trends in the processing of linear alpha olefins to technologically important products. Part 1. Katal. Prom-sti. 2020, 20, 433–455.
Li, H.; Zhang, Z. S.; Sun, G. L.; Liu, S. L.; An, L. C.; Li, X. G.; Li, H.; Gao, X. Performance and mechanism of the separation of C8 α-olefin from F-T synthesis products using novel Ag-DES. AiChE J. 2021, 67, e17252.
Torshizi, H. O.; Pour, A. N.; Mohammadi, A.; Zamani, Y.; Shahri, S. M. K. Fischer−tropsch synthesis by reduced graphene oxide nanosheets supported cobalt catalysts: Role of support and metal nanoparticle size on catalyst activity and products selectivity. Front. Chem. Sci. Eng. 2021, 15, 299–309.
Wentink, A. E.; Kuipers, N. J. M.; De Haan, A. B.; Scholtz, J.; Mulder, H. Olefin isomer separation by reactive extractive distillation: Modelling of vapour–liquid equilibria and conceptual design for 1-hexene purification. Chem. Eng. Process. Process Intensif. 2007, 46, 800–809.
Ma, Y. F.; Xu, J.; Jiang, H. Z.; Li, J. S. Low viscosity PAO preparation by oligomerization of alpha-olefin from coal with metallocene catalyst. Pet. Process. Petrochem. 2016, 47, 32–36.
Sholl, D. S.; Lively, R. P. Seven chemical separations to change the world. Nature 2016, 532, 435–437.
Saha, D.; Toof, B.; Krishna, R.; Orkoulas, G.; Gismondi, P.; Thorpe, R.; Comroe, M. L. Separation of ethane-ethylene and propane-propylene by Ag(I) doped and sulfurized microporous carbon. Microporous Mesoporous Mater. 2020, 299, 110099.
Wentink, A. E.; Kockmann, D.; Kuipers, N. J. M.; De Haan, A. B.; Scholtz, J.; Mulder, H. Effect of C6-olefin isomers on π-complexation for purification of 1-hexene by reactive extractive distillation. Sep. Purif. Technol. 2005, 43, 149–162.
Wang, Y.; Hao, W. Y.; Jacquemin, J.; Goodrich, P.; Atilhan, M.; Khraisheh, M.; Rooney, D.; Thompson, J. Enhancing liquid-phase olefin-paraffin separations using novel silver-based ionic liquids. J. Chem. Eng. Data 2015, 60, 28–36.
Faiz, R.; Li, K. Olefin/paraffin separation using membrane based facilitated transport/chemical absorption techniques. Chem. Eng. Sci. 2012, 73, 261–284.
Ashtiani, S.; Sofer, Z.; Průša, F.; Friess, K. Molecular-level fabrication of highly selective composite ZIF-8-CNT-PDMS membranes for effective CO2/N2, CO2/H2 and olefin/paraffin separations. Sep. Purif. Technol. 2021, 274, 119003.
Hartmann, M.; Böhme, U.; Hovestadt, M.; Paula, C. Adsorptive separation of olefin/paraffin mixtures with ZIF-4. Langmuir 2015, 31, 12382–12389.
Bao, Z. B.; Chang, G. G.; Xing, H. B.; Krishna, R.; Ren, Q. L.; Chen, B. L. Potential of microporous metal-organic frameworks for separation of hydrocarbon mixtures. Energy Environ. Sci. 2016, 9, 3612–3641.
Sun, H.; Ren, D. N.; Kong, R. Q.; Wang, D.; Jiang, H.; Tan, J. L.; Wu, D.; Chen, S. W.; Shen, B. X. Tuning 1-hexene/n-hexane adsorption on MOF-74 via constructing Co-Mg bimetallic frameworks. Microporous Mesoporous Mater. 2019, 284, 151–160.
Luna-Triguero, A.; Sławek, A.; Sánchez-De-Armas, R.; Gutierréz-Sevillano, J. J.; Ania, C. O.; Parra, J. B.; Vicent-Luna, J. M.; Calero, S. π-Complexation for olefin/paraffin separation using aluminosilicates. Chem. Eng. J. 2020, 380, 122482.
Saha, D.; Orkoulas, G.; Yohannan, S.; Ho, H. C.; Cakmak, E.; Chen, J. H.; Ozcan, S. Nanoporous boron nitride as exceptionally thermally stable adsorbent: Role in efficient separation of light hydrocarbons. ACS Appl. Mater. Interfaces 2017, 9, 14506–14517.
Bryan, P. F. Removal of propylene from fuel-grade propane. Sep. Purif. Rev. 2004, 33, 157–182.
Mofarahi, M.; Salehi, S. M. Pure and binary adsorption isotherms of ethylene and ethane on zeolite 5A. Adsorption 2013, 19, 101–110.
Divekar, S.; Nanoti, A.; Dasgupta, S.; Aarti; Chauhan, R.; Gupta, P.; Garg, M. O.; Singh, S. P.; Mishra, I. M. Adsorption equilibria of propylene and propane on zeolites and prediction of their binary adsorption with the ideal adsorbed solution theory. J. Chem. Eng. Data 2016, 61, 2629–2637.
Grande, C. A.; Lind, A.; Vistad, Ø.; Akporiaye, D. Olefin-paraffin separation using calcium—ETS-4. Ind. Eng. Chem. Res. 2014, 53, 15522–15530.
Anson, A.; Wang, Y.; Lin, C. C. H.; Kuznicki, T. M.; Kuznicki, S. M. Adsorption of ethane and ethylene on modified ETS-10. Chem. Eng. Sci. 2008, 63, 4171–4175.
Wang, Y. X.; Peh, S. B.; Zhao, D. Alternatives to cryogenic distillation: Advanced porous materials in adsorptive light olefin/paraffin separations. Small 2019, 15, 1900058.
Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.
Wang, Y. X.; Zhao, D. Beyond equilibrium: Metal-organic frameworks for molecular sieving and kinetic gas separation. Cryst. Growth Des. 2017, 17, 2291–2308.
Saha, D.; Kim, M. B.; Robinson, A. J.; Babarao, R.; Thallapally, P. K. Elucidating the mechanisms of paraffin-olefin separations using nanoporous adsorbents: An overview. iScience 2021, 24, 103042.
Wang, Q. M.; Shen, D. M.; Bülow, M.; Lau, M. L.; Deng, S. G.; Fitch, F. R.; Lemcoff, N. O.; Semanscin, J. Metallo-organic molecular sieve for gas separation and purification. Microporous Mesoporous Mater. 2002, 55, 217–230.
Lamia, N.; Jorge, M.; Granato, M. A.; Paz, F. A. A.; Chevreau, H.; Rodrigues, A. E. Adsorption of propane, propylene and isobutane on a metal-organic framework: Molecular simulation and experiment. Chem. Eng. Sci. 2009, 64, 3246–3259.
Bao, Z. B.; Alnemrat, S.; Yu, L.; Vasiliev, I.; Ren, Q. L.; Lu, X. Y.; Deng, S. G. Adsorption of ethane, ethylene, propane, and propylene on a magnesium-based metal-organic framework. Langmuir 2011, 27, 13554–13562.
Bae, Y. S.; Lee, C. Y.; Kim, K. C.; Farha, O. K.; Nickias, P.; Hupp, J. T.; Nguyen, S. T.; Snurr, R. Q. High propene/propane selectivity in isostructural metal-organic frameworks with high densities of open metal sites. Angew. Chem., Int. Ed. 2012, 51, 1857–1860.
Bloch, E. D.; Queen, W. L.; Krishna, R.; Zadrozny, J. M.; Brown, C. M.; Long, J. R. Hydrocarbon separations in a metal-organic framework with open iron(II) coordination sites. Science 2012, 335, 1606–1610.
Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040–2042.
Lee, S. J.; Yoon, J. W.; Seo, Y. K.; Kim, M. B.; Lee, S. K.; Lee, U. H.; Hwang, Y. K.; Bae, Y. S.; Chang, J. S. Effect of purification conditions on gas storage and separations in a chromium-based metal-organic framework MIL-101. Microporous Mesoporous Mater. 2014, 193, 160–165.
Li, K. H.; Olson, D. H.; Seidel, J.; Emge, T. J.; Gong, H. W.; Zeng, H. P.; Li, J. Zeolitic imidazolate frameworks for kinetic separation of propane and propene. J. Am. Chem. Soc. 2009, 131, 10368–10369.
Krokidas, P.; Castier, M.; Moncho, S.; Sredojevic, D. N.; Brothers, E. N.; Kwon, H. T.; Jeong, H. K.; Lee, J. S.; Economou, I. G. ZIF-67 framework:A promising new candidate for propylene/propane separation. Experimental data and molecular simulations. J. Phys. Chem. C 2016, 120, 8116–8124.
Lin, R. B.; Li, L. B.; Zhou, H. L.; Wu, H.; He, C. H.; Li, S.; Krishna, R.; Li, J. P.; Zhou, W.; Chen, B. L. Molecular sieving of ethylene from ethane using a rigid metal-organic framework. Nat. Mater. 2018, 17, 1128–1133.
Bentley, J.; Foo, G. S.; Rungta, M.; Sangar, N.; Sievers, C.; Sholl, D. S.; Nair, S. Effects of open metal site availability on adsorption capacity and olefin/paraffin selectivity in the metal-organic framework Cu3(BTC)2. Ind. Eng. Chem. Res. 2016, 55, 5043–5053.
Maes, M.; Alaerts, L.; Vermoortele, F.; Ameloot, R.; Couck, S.; Finsy, V.; Denayer, J. F. M.; De Vos, D. E. Separation of C5-hydrocarbons on microporous materials: Complementary performance of MOFs and zeolites. J. Am. Chem. Soc. 2010, 132, 2284–2292.
Hartmann, M.; Kunz, S.; Himsl, D.; Tangermann, O.; Ernst, S.; Wagener, A. Adsorptive separation of isobutene and isobutane on Cu3(BTC)2. Langmuir 2008, 24, 8634–8642.
Yu, Y.; Yang, L. F.; Tan, B.; Hu, J. B.; Wang, Q. J.; Cui, X. L.; Xing, H. B. Remarkable separation of C5 olefins in anion-pillared hybrid porous materials. Nano Res. 2021, 14, 541–545.
Yang, R. H.; Gao, R. M.; Qian, Z.; Wang, Y. J. Batch and fixed bed column selective adsorption of C6, C8 and C10 linear α-olefins from binary liquid olefin/paraffin mixtures onto 5A and 13X microporous molecular sieves. Sep. Purif. Technol. 2020, 230, 115884.
Yang, R. H.; Chen, X.; Ma, J. X.; Gao, Y.; Wang, Y. J.; Luo, G. S. Direct imaging and mechanism study of C6 α-olefin adsorption on faujasite and Linde Type A zeolites. Nano Res. 2022, 15, 5322–5330.
Chowdhury, P.; Bikkina, C.; Meister, D.; Dreisbach, F.; Gumma, S. Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different routes. Microporous Mesoporous Mater. 2009, 117, 406–413.
Aarti; Bhadauria, S.; Nanoti, A.; Dasgupta, S.; Divekar, S.; Gupta, P.; Chauhan, R. [Cu3(BTC)2]-polyethyleneimine: An efficient MOF composite for effective CO2 separation. RSC Adv. 2016, 6, 93003–93009.
Bader, R. F. W.; Beddall, P. M. Virial field relationship for molecular charge distributions and the spatial partitioning of molecular properties. J. Chem. Phys. 1972, 56, 3320–3329.
Yang, R. H.; Gao, R. M.; Wang, Y. J.; Qian, Z.; Luo, G. S. Selective adsorption of C6, C8, and C10 linear α-olefins from binary liquid-phase olefin/paraffin mixtures using zeolite adsorbents: Experiment and simulations. Langmuir 2020, 36, 8597–8609.
Yang, R. H.; Ullah, S.; Wang, Y. J.; Luo, G. S.; Qian, Z. Adsorption separation of liquid-phase C5–C6 alkynes and olefins using FAU zeolite adsorbents. Sep. Purif. Technol. 2021, 278, 119563.
Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 1999, 283, 1148–1150.
Wick, C. D.; Martin, M. G.; Siepmann, J. I. Transferable potentials for phase equilibria. 4. United-atom description of linear and branched alkenes and alkylbenzenes. J. Phys. Chem. B 2000, 104, 8008–8016.
Martin, M. G.; Siepmann, J. I. Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J. Phys. Chem. B 1998, 102, 2569–2577.
Maerzke, K. A.; Schultz, N. E.; Ross, R. B.; Siepmann, J. I. TraPPE-UA force field for acrylates and Monte Carlo simulations for their mixtures with alkanes and alcohols. J. Phys. Chem. B 2009, 113, 6415–6425.
Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 1992, 114, 10024–10035.
Dubbeldam, D.; Torres-Knoop, A.; Walton, K. S. On the inner workings of Monte Carlo codes. Mol. Simul. 2013, 39, 1253–1292.
Dubbeldam, D.; Calero, S.; Ellis, D. E.; Snurr, R. Q. RASPA: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. 2016, 42, 81–101.
Siepmann, J. I.; Frenkel, D. Configurational bias Monte Carlo: A new sampling scheme for flexible chains. Mol. Phys. 1992, 75, 59–70.
Chempath, S.; Denayer, J. F. M.; De Meyer, K. M. A.; Baron, G. V.; Snurr, R. Q. Adsorption of liquid-phase alkane mixtures in silicalite: Simulations and experiment. Langmuir 2004, 20, 150–156.
Daems, I.; Baron, G. V.; Punnathanam, S.; Snurr, R. Q.; Denayer, J. F. M. Molecular cage nestling in the liquid-phase adsorption of n-alkanes in 5A zeolite. J. Phys. Chem. C 2007, 111, 2191–2197.
Macedonia, M. D.; Maginn, E. J. A biased grand canonical Monte Carlo method for simulating adsorption using all-atom and branched united atom models. Mol. Phys. 1999, 96, 1375–1390.
Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.
Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 2010, 132, 154104.
Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Zhang, J. X.; Sheong, F. K.; Lin, Z. Y. Unravelling chemical interactions with principal interacting orbital analysis. Chem. -Eur. J. 2018, 24, 9639–9650.
Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.