AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultra-flexible graphene/nylon/PDMS coaxial fiber-shaped multifunctional sensor

Peddathimula Puneetha1,§Siva Pratap Reddy Mallem2,3,§Sung Cheol Park2Seoha Kim2Dong Hun Heo2Cheol Min Kim2Jaesool Shim4Sung Jin An5( )Dong-Yeon Lee1( )Kwi-Il Park2( )
Department of Robotics and Intelligent Machine Engineering/College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
School of Materials Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
Advanced Material Research Center, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
Department of Materials Science and Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea

§ Peddathimula Puneetha and Siva Pratap Reddy Mallem contributed equally to this work.

Show Author Information

Graphical Abstract

An extremely lightweight ultra-flexible fiber-shaped polydimethylsiloxane (PDMS)/graphene/nylon (F-PGN) sensor is fabricated using PDMS/graphene/nylon material with a diameter of 0.51 mm, based on piezoresistive and triboelectric principles, for multifunctional applications. This piezoresistive-based robotic-hand-controlled sensor exhibits response and recovery times of 120 and 55 ms (fast recovery), respectively. The triboelectricbased human finger sensor can operate under various bending modes at specific angles.

Abstract

The development of flexible and wearable devices is mainly required for tactile sensing; as such devices can adapt to complicated nonuniform surfaces, they can be applied to the human body. Nevertheless, it remains necessary to simultaneously achieve small-scale, portable, and stable developments in such devices. Thus, this work aims at fabricating a novel, lightweight, ultra-flexible, and fiber-shaped coaxial structure with a diameter of 0.51 mm using polydimethylsiloxane/graphene/nylon material, based on piezoresistive and triboelectric principles. The piezoresistive-based robotic-hand-controlled sensor thus realized exhibits a response time of 120 ms and a fast recovery time of 55 ms. Further, the piezoresistive-based sensors effectively feature whisker/joystick-guided behaviors and also sense the human finger contact. Owing to the triboelectric-based self-powered nanogenerator behavior, the resulting sensor can convert mechanical motion into electrical energy, without adversely affecting human organs. Moreover, this triboelectric-based human finger sensor can be operated under different bending modes at specific angles. Notably, this multifunctional sensor is cost-effective and suitable for various applications, including robotic-hand-controlled operations in medical surgery, whisker/joystick motions in lightweight drone technology, and navigation with high-sensitivity components.

Electronic Supplementary Material

Video
12274_2022_5235_MOESM2_ESM.mp4
Download File(s)
12274_2022_5235_MOESM1_ESM.pdf (602.1 KB)

References

[1]

Iqbal, S. M. A.; Mahgoub, I.; Du, E.; Leavitt, M. A.; Asghar, W. Advances in healthcare wearable devices. npj Flex. Electron. 2021, 5, 9.

[2]

Shi. Q. F.; Dong, B. W.; He, T. Y. Y.; Sun, Z. D.; Zhu, J. X.; Zhang, Z. X.; Lee, C. K. Progress in wearable electronics/photonics-moving toward the era of artificial intelligence and internet of things. InfoMat 2020, 2, 1131–1162.

[3]

Wang, Z. L.; Wu, W. Z. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem., Int. Ed. 2012, 51, 11700–11721.

[4]

Viola, F. A.; Spanu, A.; Ricci, P. C.; Bonfiglio, A.; Cosseddu, P. Ultrathin, flexible and multimodal tactile sensors based on organic field-effect transistors. Sci. Rep. 2018, 8, 8073.

[5]

Gong, S.; Schwalb, W.; Wang, Y. W.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. L. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 2014, 5, 3132.

[6]

Gao, Y. J.; Ota, H.; Schaler, E. W.; Chen, K.; Zhao, A.; Gao, W.; Fahad, H. M.; Leng, Y. G.; Zheng, A. Z.; Xiong, F. R. et al. Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring. Adv. Mater. 2017, 29, 1701985.

[7]

Xu, S.; Zhang, Y. H.; Jia, L.; Mathewson, K. E.; Jang, K. I.; Kim, J.; Fu, H. R.; Huang, X.; Chava, P.; Wang, R. H. et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 2014, 344, 70–74.

[8]

Bartolozzi, C.; Natale, L.; Nori, F.; Metta, G. Robots with a sense of touch. Nat. Mater. 2016, 15, 921–925.

[9]

Huang, J. N.; Xu, Z. J.; Qiu, W.; Chen, F.; Meng, Z. H.; Hou, C.; Guo, W. X.; Liu, X. Y. Stretchable and heat-resistant protein-based electronic skin for human thermoregulation. Adv. Funct. Mater. 2020, 30, 1910547.

[10]

Yang, J. C.; Mun, J.; Kwon, S. Y.; Park, S.; Bao, Z. N.; Park, S. Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 2019, 31, 1970337.

[11]

Dong, K.; Deng, J. A.; Ding, W. B.; Wang, A. C.; Wang, P. H.; Cheng, C. Y.; Wang, Y. C.; Jin, L. M.; Gu, B. H.; Sun, B. Z. et al. Versatile core-sheath yarn for sustainable biomechanical energy harvesting and real-time human-interactive sensing. Adv. Energy Mater. 2018, 8, 1801114.

[12]

Yang, W. F.; Gong, W.; Hou, C. Y.; Su, Y.; Guo, Y. B.; Zhang, W.; Li, Y. G.; Zhang, Q. Q.; Wang, H. Z. All-fiber tribo-ferroelectric synergistic electronics with high thermal-moisture stability and comfortability. Nat. Commun. 2019, 10, 5541.

[13]

Li, Z. L.; Zhu, M. M.; Shen, J. L.; Qiu, Q.; Yu, J. Y.; Ding, B. All-fiber structured electronic skin with high elasticity and breathability. Adv. Funct. Mater. 2020, 30, 1908411.

[14]

Hashemi, S. A.; Ramakrishna, S.; Aberle, A. G. Recent progress in flexible-wearable solar cells for self-powered electronic devices. Energy Environ. Sci. 2020, 13, 685–743.

[15]

Yang, Y.; Lin, Z. H.; Hou, T.; Zhang, F.; Wang, Z. L. Nanowire-composite based flexible thermoelectric nanogenerators and self-powered temperature sensors. Nano Res. 2012, 5, 888–895.

[16]

Hyeon, D. Y.; Lee, G. J.; Lee, S. H.; Park, J. J.; Kim, S.; Lee, M. K.; Park, K. I. High-temperature workable flexible piezoelectric energy harvester comprising thermally stable (K, Na)NbO3-based ceramic and polyimide composites. Compos. Part. B Eng. 2022, 234, 109671.

[17]

Park, K. I.; Jeong, C. K.; Ryu, J.; Hwang, G. T.; Lee, K. J. Flexible and large-area nanocomposite generators based on lead zirconate titanate particles and carbon nanotubes. Adv. Energy Mater. 2013, 3, 1539–1544.

[18]

Park, K. I.; Son, J. H.; Hwang, G. T.; Jeong, C. K.; Ryu, J.; Koo, M.; Choi, I.; Lee, S. H.; Byun, M.; Wang, Z. L. et al. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 2014, 26, 2514–2520.

[19]

Puneetha, P.; Mallem, S. P. R.; Lee, Y. W.; Shim, J. Strain-controlled flexible graphene/GaN/PDMS sensors based on the piezotronic effect. ACS Appl. Mater. Interfaces 2020, 12, 36660–36669.

[20]

Puneetha, P.; Mallem, S. P. R.; Bathalavaram, P.; Lee, J. H.; Shim, J. Temperature dependence of the piezotronic effect in CdS nanospheres. Nano Energy 2021, 84, 105923.

[21]

Mallem, S. P. R.; Shim, J.; Lee, J. H. Temperature dependence of the piezotronic and piezophototronic effects in flexible GaN thin films. Nano Energy 2022, 92, 106779.

[22]

Li, S. X.; Zhao, Z. H.; Liu, D.; An, J.; Gao, Y. K.; Zhou, L. L.; Li, Y. H.; Cui, S. N.; Wang, J.; Wang, Z. L. A self-powered dual-type signal vector sensor for smart robotics and automatic vehicles. Adv. Mater. 2022, 34, 2110363.

[23]

Wu, C. S.; Wang, A. C.; Ding, W. B.; Guo, H. Y.; Wang, Z. L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv. Energy Mater. 2019, 9, 1802906.

[24]

An, J.; Chen, P. F.; Wang, Z. M.; Berbille, A.; Pang, H.; Jiang, Y.; Jiang, T.; Wang, Z. L. Biomimetic hairy whiskers for robotic skin tactility. Adv. Mater. 2021, 33, 2101891.

[25]

He, E. F.; Sun, Y.; Wang, X. W.; Chen, H. J.; Sun, B. Z.; Gu, B. H.; Zhang, W. 3D angle-interlock woven structural wearable triboelectric nanogenerator fabricated with silicone rubber coated graphene oxide/cotton composite yarn. Compos. Part. B:Eng. 2020, 200, 108244.

[26]

Han, J.; Xu, C. Y.; Zhang, J. T.; Xu, N.; Xiong, Y.; Cao, X. L.; Liang, Y. C.; Zheng, L.; Sun, J.; Zhai, J. Y. et al. Multifunctional coaxial energy fiber toward energy harvesting, storage, and utilization. ACS Nano 2021, 15, 1597–1607.

[27]

Huang, F.; Hu, J. Y.; Yan, X. Review of fiber- or Yarn-based wearable resistive strain sensors: Structural design, fabrication technologies and applications. Textiles 2022, 2, 81–111.

[28]

Seyedin, M. Z.; Razal, J. M.; Innis, P. C.; Wallace, G. G. Strain-responsive polyurethane/PEDOT:PSS elastomeric composite fibers with high electrical conductivity. Adv. Funct. Mater. 2014, 24, 2957–2966.

[29]

Tang, Z. H.; Jia, S. H.; Shi, S.; Wang, F.; Li, B. Coaxial carbon nanotube/polymer fibers as wearable piezoresistive sensors. Sens. Actuators A Phys. 2018, 284, 85–95.

[30]

Zhang, Y.; Wang, L.; Guo, Z. Y.; Xu, Y. F.; Wang, Y. G.; Peng, H. S. High-performance lithium-air battery with a coaxial-fiber architecture. Angew. Chem., Int. Ed. 2016, 55, 4487–4491.

[31]

Xu, X. J.; Xie, S. L.; Zhang, Y.; Peng, H. S. The rise of fiber electronics. Angew. Chem., Int. Ed. 2019, 58, 13643–13653.

[32]

Ning, C.; Dong, K.; Cheng, R. W.; Yi, J.; Ye, C. Y.; Peng, X.; Sheng, F. F.; Jiang, Y.; Wang, Z. L. Flexible and stretchable fiber-shaped triboelectric nanogenerators for biomechanical monitoring and human-interactive sensing. Adv. Funct. Mater. 2020, 31, 2006679.

[33]

Guan, X. Y.; Xu, B. G.; Huang, J. X.; Jing, T. T.; Gao, Y. Y. Fiber-shaped stretchable triboelectric nanogenerator with a novel synergistic structure of opposite poisson’s ratios. Chem. Eng. J. 2022, 427, 131698.

[34]

Djukic, S.; Bocahut, A.; Bikard, J.; Long, D. R. Mechanical properties of amorphous and semi-crystalline semi-aromatic polyamides. Heliyon 2020, 6, e03857.

[35]

Kim, S.; Choi, Y. J.; Woo, W. J.; Sun, Q. J.; Lee, S.; Kang, M. S.; Song, Y. J.; Wang, Z. L.; Cho, J. H. Piezotronic graphene barristor: Efficient and interactive modulation of Schottky barrier. Nano Energy 2018, 50, 598–605.

[36]

Yang, Y. B.; Yang, X. D.; Yang, Y. J.; Yuan, Q. Aptamer-functionalized carbon nanomaterials electrochemical sensors for detecting cancer relevant biomolecules. Carbon 2018, 129, 380–395.

[37]

Wang, H. M.; Wang, H. M.; Wang, Y. L.; Su, X. Y.; Wang, C. Y.; Zhang, M. C.; Jian, M. Q.; Xia, K. L.; Liang, X. P.; Lu, H. J. et al. Laser writing of janus graphene/kevlar textile for intelligent protective clothing. ACS Nano 2020, 14, 3219–3226.

[38]

Stankova, N. E.; Atanasov, P. A.; Nikov, R. G.; Nedyalkov, N. N.; Stoyanchov, T. R.; Fukata, N.; Kolev, K. N.; Valova, E. I.; Georgieva, J. S.; Armyanov, S. A. Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing. Appl. Surf. Sci. 2016, 374, 96–103.

[39]

Miller, J. V.; Bartick, E. G. Forensic analysis of single fibers by Raman spectroscopy. Appl. Spectrosc. 2001, 55, 1729–1732.

[40]

Menchaca, C.; Alvarez-Castillo, A.; Martínez-Barrera, G.; López-Valdivia, H.; Carrasco, H.; Castano, V. M. Mechanisms for the modification of nylon 6,12 by gamma irradiation. Int. J. Mater. Prod. Technol. 2003, 19, 521–529.

[41]

Milani, A. Unpolarized and polarized Raman spectroscopy of nylon-6 polymorphs: A quantum chemical approach. J. Phys. Chem. B 2015, 119, 3868–3874.

[42]

Lee, J. G.; Kim, D. Y.; Mali, M. G.; Al-Deyab, S. S.; Swihart, M. T.; Yoon, S. S. Supersonically blown nylon-6 nanofibers entangled with graphene flakes for water purification. Nanoscale 2015, 7, 19027–19035.

[43]

D'Alò, B.; Coppola, G.; Pallesi, B. Studies of crystalline forms of nylon-6 by X-ray and i.r. spectrophotometry. Polymer 1974, 15, 130–132.

[44]

Gong, L.; Yin, B.; Li, L. P.; Yang, M. B. Nylon-6/graphene composites modified through polymeric modification of graphene. Compos. Part B Eng. 2015, 73, 49–56.

[45]

Islam, A.; Khan, A. N.; Shakir, M. F.; Islam, K. Strengthening of β polymorph in PVDF/FLG and PVDF/GO nanocomposites. Mater. Res. Express 2020, 7, 015017.

[46]

Iwamoto, R.; Murase, H. Infrared spectroscopic study of the interactions of nylon-6 with water. J. Polym. Sci. 2003, 41, 1722–1729.

[47]

Liu, K.; Li, Y. Y.; Tao, L.; Xiao, R. Preparation and characterization of polyamide 6 fibre based on a phosphorus-containing flame retardant. RSC Adv. 2018, 8, 9261–9271.

[48]

Çiplak, Z.; Yildiz, N.; Çalimli, A. Investigation of graphene/Ag nanocomposites synthesis parameters for two different synthesis methods. Fuller. Nanotub. Carbon Nanostruct. 2015, 23, 361–370.

[49]

Mahdi, H. A. An FTIR study of characterization of neat and UV stabilized nylon 6,6 polymer films. IBN Al-Haitham J. Pure Appl. Sci. 2011, 24, 1.

[50]

Gupta, S. K.; Singh, P.; Kumar, R. PALS and physico-chemical study of swift heavy ions and gamma radiation irradiated polyamide nylon 66 polymer. Vacuum 2015, 121, 177–186.

[51]

Kang, X. F.; Pan, C. X.; Chen, Y. H.; Pu, X. Boosting performances of triboelectric nanogenerators by optimizing dielectric properties and thickness of electrification layer. RSC Adv. 2020, 10, 17752–17759.

[52]

Wang, Z.; Liu, W. L.; Hu, J. L.; He, W. C.; Yang, H. K.; Ling, C.; Xi, Y.; Wang, X.; Liu, A. P.; Hu, C. G. Two voltages in contact-separation triboelectric nanogenerator: From asymmetry to symmetry for maximum output. Nano Energy 2020, 69, 104452.

Nano Research
Pages 5541-5547
Cite this article:
Puneetha P, Reddy Mallem SP, Park SC, et al. Ultra-flexible graphene/nylon/PDMS coaxial fiber-shaped multifunctional sensor. Nano Research, 2023, 16(4): 5541-5547. https://doi.org/10.1007/s12274-022-5235-0
Topics:

1105

Views

5

Crossref

6

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 17 August 2022
Revised: 13 October 2022
Accepted: 23 October 2022
Published: 10 January 2023
© Tsinghua University Press 2022
Return