AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A self-activated NO-releasing hydrogel depot for photothermal enhanced sterilization

Shen Zhang1Kelei Guan3Yaoxin Zhang1Junqing Zhang1Hongyu Fu4Ting Wu2Dilan Ouyang2Chaoqun Liu1( )Qiang Wu1( )Zhaowei Chen2( )
School of Pharmacy, Henan University, Kaifeng 475004, China
Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, Fuzhou 350108, China
Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
Henan University School of Stomatology, Kaifeng 475004, China
Show Author Information

Graphical Abstract

Here, a self-activated NO-releasing hydrogel depot is constructed, which can release NO continuously at the infection site via cascading chemical reactions between CaO2, H2O, and L-arginine. By combining with the photothermal effect of oxide mesoporous carbon nanoparticles, the hydrogel depot possesses a synergistic sterilization behavior both in vitro and in vivo.

Abstract

The ascendant danger of bacterial infections has resulted in an urgent requirement for developing new antibacterial approaches. Recently, nitric oxide (NO) has shown a broad-spectrum antimicrobial activity while avoiding resistance. However, achieving effective NO-based antibacterial therapies remains challenging, mired by the safety concerns of NO donor, residual toxicity by the ingredients, or complicated procedures. Herein, a self-activated NO-releasing hydrogel depot is fabricated by Ca2+-crosslinked sodium alginate doped with CaO2 nanoparticles, L-arginine, and oxidized mesoporous carbon nanoparticles (OMCN) for photothermal enhanced bacteria killing. The locally concentrated H2O2, generated from the reaction of CaO2 nanoparticles and water, could oxidize L-arginine to release NO. Meanwhile, benefiting from the remarkable photothermal effect of OMCN, the hybrid hydrogel possesses a synergistic sterilization behavior in combating both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria in vitro. Moreover, the dual therapeutic hydrogel displays high efficiency in treatment of bacteria-infected mice with back wound model while showing no distinct toxicity. In addition, the restricted environment of hydrogel makes it easy to remove all the components from the infected wound, alleviating possible side effects from exogenous H2O2. As such, the designed NO-synergistic photothermal hydrogel provides a promising strategy for treating bacterial infections.

Electronic Supplementary Material

Download File(s)
12274_2022_5239_MOESM1_ESM.pdf (4.5 MB)

References

[1]

Zhang, Y.; Sun, P. P.; Zhang, L.; Wang, Z. Z.; Wang, F. M.; Dong, K.; Liu, Z.; Ren, J. S.; Qu, X. G. Silver-infused porphyrinic metal-organic framework: Surface-adaptive, on-demand nanoplatform for synergistic bacteria killing and wound disinfection. Adv. Funct. Mater. 2019, 29, 1808594.

[2]

Wang, Y.; Yang, Y. N.; Shi, Y. R.; Song, H.; Yu, C. Z. Antibiotic-free antibacterial strategies enabled by nanomaterials: Progress and perspectives. Adv. Mater. 2020, 32, 1904106.

[3]

Liu, P.; Wu, Y. Z.; Mehrjou, B.; Tang, K. W.; Wang, G. M.; Chu, P. K. Versatile phenol-incorporated nanoframes for in situ antibacterial activity based on oxidative and physical damages. Adv. Funct. Mater. 2022, 32, 2110635.

[4]

Liu, C. Q.; Feng, S.; Ma, L. Y.; Sun, M. Y.; Wei, Z. H.; Wang, J. Q.; Chen, Z. W.; Guo, Y. H.; Shi, J. H.; Wu, Q. An amphiphilic carbonaceous/nanosilver composite-incorporated urinary catheter for long-term combating bacteria and biofilms. ACS Appl. Mater. Interfaces 2021, 13, 38029–38039.

[5]

Kim, W.; Zhu, W. P.; Hendricks, G. L.; Van Tyne, D.; Steele, A. D.; Keohane, C. E.; Fricke, N.; Conery, A. L.; Shen, S.; Pan, W. et al. A new class of synthetic retinoid antibiotics effective against bacterial persisters. Nature 2018, 556, 103–107.

[6]

Qiao, Y. Q.; Xu, Y. D.; Liu, X. M.; Zheng, Y. F.; Li, B.; Han, Y.; Li, Z. Y.; Yeung, K. W. K.; Liang, Y. Q.; Zhu, S. L. et al. Microwave assisted antibacterial action of garcinia nanoparticles on gram-negative bacteria. Nat. Commun. 2022, 13, 2461.

[7]

He, R. K.; Ding, C.; Luo, Y.; Guo, G. Y.; Tang, J.; Shen, H.; Wang, Q. J.; Zhang, X. L. Congener-induced sulfur-related metabolism interference therapy promoted by photothermal sensitization for combating bacteria. Adv. Mater. 2021, 33, 2104410.

[8]

Yu, S. M.; Li, G. W.; Liu, R.; Ma, D.; Xue, W. Dendritic Fe3O4@poly(dopamine)@PAMAM nanocomposite as controllable NO-releasing material: A synergistic photothermal and NO antibacterial study. Adv. Funct. Mater. 2018, 28, 1707440.

[9]

Sang, Y. J.; Li, W.; Liu, H.; Zhang, L.; Wang, H.; Liu, Z. W.; Ren, J. S.; Qu, X. G. Construction of nanozyme-hydrogel for enhanced capture and elimination of bacteria. Adv. Funct. Mater. 2019, 29, 1900518.

[10]

Wang, W. S.; Li, B. L.; Yang, H. L.; Lin, Z. F.; Chen, L. L.; Li, Z.; Ge, J. Y.; Zhang, T.; Xia, H.; Li, L. H. et al. Efficient elimination of multidrug-resistant bacteria using copper sulfide nanozymes anchored to graphene oxide nanosheets. Nano Res. 2020, 13, 2156–2164.

[11]

Chen, Z. W.; Wang, Z. Z.; Ren, J. S.; Qu, X. G. Enzyme mimicry for combating bacteria and biofilms. Acc. Chem. Res. 2018, 51, 789–799.

[12]

Mao, C. Y.; Jin, W. Y.; Xiang, Y. M.; Zhu, Y. Z.; Wu, J.; Liu, X. M.; Wu, S. L.; Zheng, Y. F.; Cheung, K. M. C.; Yeung, K. W. K. Reversing multidrug-resistant Escherichia coli by compromising its BAM biogenesis and enzymatic catalysis through microwave hyperthermia therapy. Adv. Funct. Mater. 2022, 32, 2202887.

[13]

Zhao, W. B.; Wang, R. T.; Liu, K. K.; Du, M. R.; Wang, Y.; Wang, Y. Q.; Zhou, R.; Liang, Y. C.; Ma, R. N.; Sui, L. Z. et al. Near-infrared carbon nanodots for effective identification and inactivation of gram-positive bacteria. Nano Res. 2022, 15, 1699–1708.

[14]

Wang, M. F.; Hou, Z. Y.; Liu, S. N.; Liang, S.; Ding, B. B.; Zhao, Y. J.; Chang, M. Y.; Han, G.; Kheraif, A. A. A.; Lin, J. A multifunctional nanovaccine based on L-arginine-loaded black mesoporous titania: Ultrasound-triggered synergistic cancer sonodynamic therapy/gas therapy/immunotherapy with remarkably enhanced efficacy. Small 2021, 17, 2005728.

[15]

Jin, H. B.; Yang, L.; Ahonen, M. J. R.; Schoenfisch, M. H. Nitric oxide-releasing cyclodextrins. J. Am. Chem. Soc. 2018, 140, 14178–14184.

[16]

Tang, W.; Yang, Z.; He, L. C.; Deng, L. M.; Fathi, P.; Zhu, S. J.; Li, L.; Shen, B.; Wang, Z. T.; Jacobson, O. et al. A hybrid semiconducting organosilica-based O2 nanoeconomizer for on-demand synergistic photothermally boosted radiotherapy. Nat. Commun. 2021, 12, 523.

[17]

Yuan, Z.; Lin, C. C.; He, Y.; Tao, B. L.; Chen, M. W.; Zhang, J. X.; Liu, P.; Cai, K. Y. Near-infrared light-triggered nitric-oxide-enhanced photodynamic therapy and low-temperature photothermal therapy for biofilm elimination. ACS Nano 2020, 14, 3546–3562.

[18]

Huang, S. S.; Liu, H. L.; Liao, K. D.; Hu, Q. Q.; Guo, R.; Deng, K. X. Functionalized GO nanovehicles with nitric oxide release and photothermal activity-based hydrogels for bacteria-infected wound healing. ACS Appl. Mater. Interfaces 2020, 12, 28952–28964.

[19]

Liu, G. H.; Wang, L.; He, Y.; Wang, L. C.; Deng, Z. W.; Liu, J. J.; Peng, D.; Ding, T.; Lu, L.; Ding, Y. et al. Polydopamine nanosheets doped injectable hydrogel with nitric oxide release and photothermal effects for bacterial ablation and wound healing. Adv. Healthc. Mater. 2021, 10, 2101476.

[20]

Hu, D. F.; Deng, Y. Y.; Jia, F.; Jin, Q.; Ji, J. Surface charge switchable supramolecular nanocarriers for nitric oxide synergistic photodynamic eradication of biofilms. ACS Nano 2020, 14, 347–359.

[21]

Gao, Q.; Zhang, X.; Yin, W. Y.; Ma, D. Q.; Xie, C. J.; Zheng, L. R.; Dong, X. H.; Mei, L. Q.; Yu, J.; Wang, C. Z. et al. Functionalized MoS2 nanovehicle with near-infrared laser-mediated nitric oxide release and photothermal activities for advanced bacteria-infected wound therapy. Small 2018, 14, 1802290.

[22]

Heilman, B. J.; St John, J.; Oliver, S. R. J.; Mascharak, P. K. Light-triggered eradication of Acinetobacter baumannii by means of NO delivery from a porous material with an entrapped metal nitrosyl. J. Am. Chem. Soc. 2012, 134, 11573–11582.

[23]

Sun, J.; Fan, Y.; Ye, W.; Tian, L. M.; Niu, S. C.; Ming, W. H.; Zhao, J.; Ren, L. Q. Near-infrared light triggered photodynamic and nitric oxide synergistic antibacterial nanocomposite membrane. Chem. Eng. J. 2021, 417, 128049.

[24]

Hou, J. L.; Pan, Y. W.; Zhu, D. S.; Fan, Y. Y.; Feng, G. W.; Wei, Y. Z.; Wang, H.; Qin, K.; Zhao, T. Z.; Yang, Q. et al. Targeted delivery of nitric oxide via a “bump-and-hole”-based enzyme-prodrug pair. Nat. Chem. Biol. 2019, 15, 151–160.

[25]

Champeau, M.; Póvoa, V.; Militão, L.; Cabrini, F. M.; Picheth, G. F.; Meneau, F.; Jara, C. P.; De Araujo, E. P.; De Oliveira, M. G. Supramolecular poly(acrylic acid)/F127 hydrogel with hydration-controlled nitric oxide release for enhancing wound healing. Acta. Biomater. 2018, 74, 312–325.

[26]

Dong, K.; Ju, E. G.; Gao, N.; Wang, Z. Z.; Ren, J. S.; Qu, X. G. Synergistic eradication of antibiotic-resistant bacteria based biofilms in vivo using a NIR-sensitive nanoplatform. Chem. Commun. 2016, 52, 5312–5315.

[27]

Zhu, J. W.; Tian, J.; Yang, C.; Chen, J. P.; Wu, L. H.; Fan, M. N.; Cai, X. J. L-arg-rich amphiphilic dendritic peptide as a versatile NO donor for NO/photodynamic synergistic treatment of bacterial infections and promoting wound healing. Small 2021, 17, 210495.

[28]

Fan, W. P.; Lu, N.; Huang, P.; Liu, Y.; Yang, Z.; Wang, S.; Yu, G. C.; Liu, Y. J.; Hu, J. K.; He, Q. J. et al. Glucose-responsive sequential generation of hydrogen peroxide and nitric oxide for synergistic cancer starving-like/gas therapy. Angew. Chem., Int. Ed. 2017, 56, 1229–1233.

[29]

Cao, Y. F.; Liu, M. S.; Cheng, J.; Yin, J. J.; Huang, C. S.; Cui, H. Y.; Zhang, X. D.; Zhao, G. H. Acidity-triggered tumor-targeted nanosystem for synergistic therapy via a cascade of ROS generation and NO release. ACS Appl. Mater. Interfaces 2020, 12, 28975–28984.

[30]

Lu, B. T.; Hu, E. L.; Xie, R. Q.; Yu, K.; Lu, F.; Bao, R.; Wang, C. H.; Lan, G. Q.; Dai, F. Y. Magnetically guided nanoworms for precise delivery to enhance in situ production of nitric oxide to combat focal bacterial infection in vivo. ACS Appl. Mater. Interfaces 2021, 13, 22225–22239.

[31]

Fang, X.; Cai, S. X.; Wang, M.; Chen, Z. W.; Lu, C. H.; Yang, H. H. Photogenerated holes mediated nitric oxide production for hypoxic tumor treatment. Angew. Chem., Int. Ed. 2021, 60, 7046–7050.

[32]

Wang, A. H.; Fan, G. S.; Qi, H. L.; Li, H. Y.; Pang, C. C.; Zhu, Z. K.; Ji, S. C.; Liang, H.; Jiang, B. P.; Shen, X. C. H2O2-activated in situ polymerization of aniline derivative in hydrogel for real-time monitoring and inhibition of wound bacterial infection. Biomaterials 2022, 289, 121798.

[33]

Shi, Y. T.; Cao, Y. F.; Cheng, J.; Yu, W. W.; Liu, M. S.; Yin, J. J.; Huang, C. S.; Liang, X. Q.; Zhou, H. C.; Liu, H. B. et al. Construction of self-activated nanoreactors for cascade catalytic anti-biofilm therapy based on H2O2 self-generation and switch-on NO release. Adv. Funct. Mater. 2022, 32, 2111148.

[34]

Yu, J.; Zhang, R. L.; Chen, B. H.; Liu, X. L.; Jia, Q.; Wang, X. F.; Yang, Z.; Ning, P. B.; Wang, Z. L.; Yang, Y. Injectable reactive oxygen species-responsive hydrogel dressing with sustained nitric oxide release for bacterial ablation and wound healing. Adv. Funct. Mater. 2022, 32, 2202857.

[35]

Liu, X. P.; Yan, Z. Q.; Zhang, Y.; Liu, Z. W.; Sun, Y. H.; Ren, J. S.; Qu, X. G. Two-dimensional metal-organic framework/enzyme hybrid nanocatalyst as a benign and self-activated cascade reagent for in vivo wound healing. ACS Nano 2019, 13, 5222–5230.

[36]

Cui, H. Y.; Liu, M. S.; Yu, W. W.; Cao, Y. F.; Zhou, H. C.; Yin, J. J.; Liu, H. B.; Que, S.; Wang, J. J.; Huang, C. S. et al. Copper peroxide-loaded gelatin sponges for wound dressings with antimicrobial and accelerating healing properties. ACS Appl. Mater. Interfaces 2021, 13, 26800–26807.

[37]

Wang, Z. Z.; Dong, K.; Liu, Z.; Zhang, Y.; Chen, Z. W.; Sun, H. J.; Ren, J. S.; Qu, X. G. Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection. Biomaterials 2017, 113, 145–157.

[38]

Li, Y.; Fu, R. Z.; Duan, Z. G.; Zhu, C. H.; Fan, D. D. Injectable hydrogel based on defect-rich multi-nanozymes for diabetic wound healing via an oxygen self-supplying cascade reaction. Small 2022, 18, 2200165.

[39]

Zhang, S. C.; Cao, C. Y.; Lv, X. Y.; Dai, H. M.; Zhong, Z. H.; Liang, C.; Wang, W. J.; Huang, W.; Song, X. J.; Dong, X. C. A H2O2 self-sufficient nanoplatform with domino effects for thermal-responsive enhanced chemodynamic therapy. Chem. Sci. 2020, 11, 1926–1934.

[40]

Sun, P. P.; Deng, Q. Q.; Kang, L. H.; Sun, Y. H.; Ren, J. S.; Qu, X. G. A smart nanoparticle-laden and remote-controlled self-destructive macrophage for enhanced chemo/chemodynamic synergistic therapy. ACS Nano 2020, 14, 13894–13904.

[41]

Dong, S. J.; Chen, Y.; Yu, L. D.; Lin, K. L.; Wang, X. D. Magnetic hyperthermia-synergistic H2O2 self-sufficient catalytic suppression of osteosarcoma with enhanced bone-regeneration bioactivity by 3D-printing composite scaffolds. Adv. Funct. Mater. 2020, 30, 1907071.

[42]

Xu, M. M.; Zhou, H.; Liu, Y. N.; Sun, J.; Xie, W. J.; Zhao, P.; Liu, J. Ultrasound-excited protoporphyrin IX-modified multifunctional nanoparticles as a strong inhibitor of tau phosphorylation and β-amyloid aggregation. ACS Appl. Mater. Interfaces 2018, 10, 32965–32980.

[43]

Li, Y.; Lu, J. L.; Zhang, J.; Zhu, X. H.; Liu, J. L.; Zhang, Y. Phase-change nanotherapeutic agents based on mesoporous carbon for multimodal imaging and tumor therapy. ACS Appl. Bio Mater. 2020, 3, 8705–8713.

[44]

Li, Y. Y.; Wang, D. Q.; Wen, J.; Yu, P.; Liu, J. M.; Li, J. S.; Chu, H. T. Chemically grafted nanozyme composite cryogels to enhance antibacterial and biocompatible performance for bioliquid regulation and adaptive bacteria trapping. ACS Nano 2021, 15, 19672–19683.

[45]

Liu, Y. N.; Guo, Z. R.; Li, F.; Xiao, Y. Q.; Zhang, Y. L.; Bu, T.; Jia, P.; Zhe, T. T.; Wang, L. Multifunctional magnetic copper ferrite nanoparticles as fenton-like reaction and near-infrared photothermal agents for synergetic antibacterial therapy. ACS Appl. Mater. Interfaces 2019, 11, 31649–31660.

[46]

Li, W. P.; Su, C. H.; Chang, Y. C.; Lin, Y. J.; Yeh, C. S. Ultrasound-induced reactive oxygen species mediated therapy and imaging using a fenton reaction activable polymersome. ACS Nano 2016, 10, 2017–2027.

[47]

Yan, Z. Q.; Bing, W.; Ding, C.; Dong, K.; Ren, J. S.; Qu, X. G. A H2O2-free depot for treating bacterial infection: Localized cascade reactions to eradicate biofilms in vivo. Nanoscale 2018, 10, 17656–17662.

[48]

Zhang, R.; Tian, Y. C.; Pang, L.; Xu, T. M.; Yu, B.; Cong, H. L.; Shen, Y. Q. Wound microenvironment-responsive protein hydrogel drug-loaded system with accelerating healing and antibacterial property. ACS Appl. Mater. Interfaces 2022, 14, 10187–10199.

[49]

Liu, X. H.; Liu, Y.; Wang, J. N.; Wei, T. X.; Dai, Z. H. Mild hyperthermia-enhanced enzyme-mediated tumor cell chemodynamic therapy. ACS Appl. Mater. Interfaces 2019, 11, 23065–23071.

[50]

Rosenberg, M.; Azevedo, N. F.; Ivask, A. Propidium iodide staining underestimates viability of adherent bacterial cells. Sci. Rep. 2019, 9, 6483.

Nano Research
Pages 5346-5356
Cite this article:
Zhang S, Guan K, Zhang Y, et al. A self-activated NO-releasing hydrogel depot for photothermal enhanced sterilization. Nano Research, 2023, 16(4): 5346-5356. https://doi.org/10.1007/s12274-022-5239-9
Topics:

5122

Views

18

Crossref

16

Web of Science

17

Scopus

1

CSCD

Altmetrics

Received: 20 September 2022
Revised: 20 October 2022
Accepted: 23 October 2022
Published: 31 December 2022
© Tsinghua University Press 2022
Return