AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Epitaxial interface stabilizing iridium dioxide toward the oxygen evolution reaction under high working potentials

Guoqiang Zhao1Zhouxin Luo1Baohua Zhang1Yaping Chen1Xiangzhi Cui2,3Jian Chen4Yongfeng Liu1Mingxia Gao1Hongge Pan1,4Wenping Sun1,5( )
School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, China
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Show Author Information

Graphical Abstract

Epitaxial boron nitride (BN)–iridium dioxide (IrO2) interface was established by anchoring IrO2 nanoparticles (NPs) on exfoliated h-BN nanosheets toward substantially enhanced oxygen evolution reaction (OER) activity and stability. The epitaxial interface stabilizes the highly active Ir(V) species, and hence improves the electrocatalytic stability of IrO2 NPs, in particular in high working potential regions.

Abstract

Proton exchange membrane water electrolyzer (PEMWE) driven by renewable electricity is a promising technique toward green hydrogen production, but the corrosive environment and high working potential pose severe challenges for developing advanced electrocatalysts for the oxygen evolution reaction (OER). Although Ir-based materials possess relatively balanced activity and stability for the OER, their dissolution behavior cannot be neglected, in particular under high working potentials. In this work, iridium dioxide (IrO2) nanoparticles (NPs) were anchored on the surface of exfoliated h-boron nitride (BN) nanosheets (NSs) toward the OER reaction in acid media. Highly active Ir(V) species were stabilized by the epitaxial interface between IrO2 and h-BN, and therefore the IrO2/BN delivered stable performance at increased working potentials, while the activity of bare IrO2 NPs without h-BN support decreased rapidly. Also, the smaller lattice spacing of h-BN induced compressive strain for IrO2, resulting in improved activity. Our results demonstrate the feasibility of stabilizing highly active Ir(V) species for the OER in acid media by constructing robust interface and provide new possibilities toward designing advanced heterostructured electrocatalysts.

Electronic Supplementary Material

Download File(s)
12274_2022_5240_MOESM1_ESM.pdf (1.5 MB)

References

[1]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[2]

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

[3]

Mao, J. J.; He, C. T.; Pei, J. J.; Liu, Y.; Li, J.; Chen, W. X.; He, D. S.; Wang, D. S.; Li, Y. D. Isolated Ni atoms dispersed on Ru nanosheets: High-performance electrocatalysts toward hydrogen oxidation reaction. Nano Lett. 2020, 20, 3442–3448.

[4]

Zheng, X. B.; Cui, P. X.; Qian, Y. M.; Zhao, G. Q.; Zheng, X. S.; Xu, X.; Cheng, Z. X.; Liu, Y. Y.; Dou, S. X.; Sun, W. P. Multifunctional active-center-transferable platinum/lithium cobalt oxide heterostructured electrocatalysts towards superior water splitting. Angew. Chem., Int. Ed. 2020, 59, 14533–14540.

[5]

Glenk, G.; Reichelstein, S. Economics of converting renewable power to hydrogen. Nat. Energy 2019, 4, 216–222.

[6]

Mahmood, J.; Li, F.; Jung, S. M.; Okyay, M. S.; Ahmad, I.; Kim, S. J.; Park, N.; Jeong, H. Y.; Baek, J. B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 2017, 12, 441–446.

[7]

Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

[8]

Chen, Z. C.; Guo, L.; Pan, L.; Yan, T. Q.; He, Z. X.; Li, Y.; Shi, C. X.; Huang, Z. F.; Zhang, X. W.; Zou, J. J. Advances in oxygen evolution electrocatalysts for proton exchange membrane water electrolyzers. Adv. Energy Mater. 2022, 12, 2103670.

[9]

Hao, S. Y.; Sheng, H. Y.; Liu, M.; Huang, J. Z.; Zheng, G. K.; Zhang, F.; Liu, X. N.; Su, Z. W.; Hu, J. J.; Qian, Y. et al. Torsion strained iridium oxide for efficient acidic water oxidation in proton exchange membrane electrolyzers. Nat. Nanotechnol. 2021, 16, 1371–1377.

[10]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[11]

Kuang, M.; Zhang, J. M.; Liu, D. B.; Tan, H. T.; Dinh, K. N.; Yang, L.; Ren, H.; Huang, W. J.; Fang, W.; Yao, J. D. et al. Amorphous/crystalline heterostructured cobalt-vanadium-iron (oxy)hydroxides for highly efficient oxygen evolution reaction. Adv. Energy Mater. 2020, 10, 2002215.

[12]

Yan, J. Q.; Kong, L. Q.; Ji, Y. J.; White, J.; Li, Y. Y.; Zhang, J.; An, P. F.; Liu, S. Z.; Lee, S. T.; Ma, T. Y. Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation. Nat. Commun. 2019, 10, 2149.

[13]

Nong, H. N.; Falling, L. J.; Bergmann, A.; Klingenhof, M.; Tran, H. P.; Spöri, C.; Mom, R.; Timoshenko, J.; Zichittella, G.; Knop-Gericke, A. et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 2020, 587, 408–413.

[14]

Hu, Y. M.; Luo, X.; Wu, G.; Chao, T. T.; Li, Z. J.; Qu, Y. T.; Li, H.; Wu, Y. E.; Jiang, B.; Hong, X. Engineering the atomic layer of RuO2 on PdO nanosheets boosts oxygen evolution catalysis. ACS Appl. Mater. Interfaces 2019, 11, 42298–42304.

[15]

Fu, Y.; Liao, Y.; Li, P.; Li, H.; Jiang, S. Y.; Huang, H. W.; Sun, W. P.; Li, T. Y.; Yu, H.; Li, K. K. et al. Layer structured materials for ambient nitrogen fixation. Coord. Chem. Rev. 2022, 460, 214468.

[16]

Sharma, L.; Katiyar, N. K.; Parui, A.; Das, R.; Kumar, R.; Tiwary, C. S.; Singh, A. K.; Halder, A.; Biswas, K. Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER). Nano Res. 2022, 15, 4799–4806.

[17]

Viswanathan, V.; Hansen, H. A.; Rossmeisl, J.; Nørskov, J. K. Universality in oxygen reduction electrocatalysis on metal surfaces. ACS Catal. 2012, 2, 1654–1660.

[18]

Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159–1165.

[19]

Chen, F. Y.; Wu, Z. Y.; Adler, Z.; Wang, H. T. Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design. Joule 2021, 5, 1704–1731.

[20]

An, L.; Wei, C.; Lu, M.; Liu, H. W.; Chen, Y. B.; Scherer, G. G.; Fisher, A. C.; Xi, P. X.; Xu, Z. J.; Yan, C. H. Recent development of oxygen evolution electrocatalysts in acidic environment. Adv. Mater. 2021, 33, 2006328.

[21]

Chen, Z. J.; Duan, X. G.; Wei, W.; Wang, S. B.; Ni, B. J. Iridium-based nanomaterials for electrochemical water splitting. Nano Energy 2020, 78, 105270.

[22]

Li, L. G.; Wang, P. T.; Cheng, Z. F.; Shao, Q.; Huang, X. Q. One-dimensional iridium-based nanowires for efficient water electrooxidation and beyond. Nano Res. 2022, 15, 1087–1093.

[23]

Cherevko, S.; Zeradjanin, A. R.; Topalov, A. A.; Kulyk, N.; Katsounaros, I.; Mayrhofer, K. J. Dissolution of noble metals during oxygen evolution in acidic media. ChemCatChem 2014, 6, 2219–2223.

[24]

Zagalskaya, A.; Alexandrov, V. Mechanistic study of IrO2 dissolution during the electrocatalytic oxygen evolution reaction. J. Phys. Chem. Lett. 2020, 11, 2695–2700.

[25]

Czioska, S.; Ehelebe, K.; Geppert, J.; Escalera-López, D.; Boubnov, A.; Saraçi, E.; Mayerhöfer, B.; Krewer, U.; Cherevko, S.; Grunwaldt, J. D. Heating up the OER: Investigation of IrO2 OER catalysts as function of potential and temperature. ChemElectroChem 2022, 9, e202200514.

[26]

Lee, B. S.; Ahn, S. H.; Park, H. Y.; Choi, I.; Yoo, S. J.; Kim, H. J.; Henkensmeier, D.; Kim, J. Y.; Park, S.; Nam, S. W. et al. Development of electrodeposited IrO2 electrodes as anodes in polymer electrolyte membrane water electrolysis. Appl. Catal. B: Environ. 2015, 179, 285–291.

[27]

Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.

[28]

Lei, Z. W.; Wang, T. Y.; Zhao, B. T.; Cai, W. B.; Liu, Y.; Jiao, S. H.; Li, Q.; Cao, R. G.; Liu, M. L. Recent progress in electrocatalysts for acidic water oxidation. Adv. Energy Mater. 2020, 10, 2000478.

[29]

Li, F.; Han, G. F.; Jeon, J. P.; Shin, T. J.; Fu, Z. P.; Lu, Y. L.; Baek, J. B. Surface electronic modulation with hetero-single atoms to enhance oxygen evolution catalysis. ACS Nano 2021, 15, 11891–11897.

[30]

Qi, Q. L.; Tai, J.; Hu, J.; Zhang, Z. H.; Dai, L. Q.; Song, H. C.; Shao, M. H.; Zhang, C. X.; Zhang, L. B. Ligand functionalized iron-based metal-organic frameworks for efficient electrocatalytic oxygen evolution. ChemCatChem 2021, 13, 4976–4984.

[31]

Chen, L. W.; He, F. X.; Shao, R. Y.; Yan, Q. Q.; Yin, P.; Zeng, W. J.; Zuo, M.; He, L. X.; Liang, H. W. Intermetallic IrGa-IrOx core–shell electrocatalysts for oxygen evolution. Nano Res. 2022, 15, 1853–1860.

[32]

Kweon, D. H.; Okyay, M. S.; Kim, S. J.; Jeon, J. P.; Noh, H. J.; Park, N.; Mahmood, J.; Baek, J. B. Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency. Nat. Commun. 2020, 11, 1278.

[33]

Chen, Y. P.; Cai, J. Y.; Li, P.; Zhao, G. Q.; Wang, G. M.; Jiang, Y. Z.; Chen, J.; Dou, S. X.; Pan, H. G.; Sun, W. P. Hexagonal boron nitride as a multifunctional support for engineering efficient electrocatalysts towards oxygen reduction reaction. Nano Lett. 2020, 20, 6807–6814.

[34]

Joshi, P.; Yadav, R.; Hara, M.; Inoue, T.; Motoyama, Y.; Yoshimura, M. Contribution of B, N-co-doped reduced graphene oxide as a catalyst support to the activity of iridium oxide for oxygen evolution reaction. J. Mater. Chem. A 2021, 9, 9066–9080.

[35]

Shah, A. K.; Qureshi, M. In situ grown cuboidal MnCo2O4/h boron nitride heterojunction: A noble metal-free approach based on efficient hole extraction for electrochemical oxygen evolution reaction. ACS Appl. Energy Mater. 2022, 5, 1551–1559.

[36]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[37]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[38]

Ledendecker, M.; Geiger, S.; Hengge, K.; Lim, J.; Cherevko, S.; Mingers, A. M.; Göhl, D.; Fortunato, G. V.; Jalalpoor, D.; Schüth, F. et al. Towards maximized utilization of iridium for the acidic oxygen evolution reaction. Nano Res. 2019, 12, 2275–2280.

[39]

Oakton, E.; Lebedev, D.; Povia, M.; Abbott, D. F.; Fabbri, E.; Fedorov, A.; Nachtegaal, M.; Copéret, C.; Schmidt, T. J. IrO2-TiO2: A high-surface-area, active, and stable electrocatalyst for the oxygen evolution reaction. ACS Catal. 2017, 7, 2346–2352.

[40]

Liu, H.; Zhang, X. H.; Li, Y. X.; Li, X.; Dong, C. K.; Wu, D. Y.; Tang, C. C.; Chou, S. L.; Fang, F.; Du, X. W. Conductive boron nitride as promising catalyst support for the oxygen evolution reaction. Adv. Energy Mater. 2020, 10, 1902521.

[41]

Nong, H. N.; Reier, T.; Oh, H. S.; Gliech, M.; Paciok, P.; Vu, T. H. T.; Teschner, D.; Heggen, M.; Petkov, V.; Schlögl, R. et al. A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core–shell electrocatalysts. Nat. Catal. 2018, 1, 841–851.

[42]

Yang, L.; Yu, G. T.; Ai, X.; Yan, W. S.; Duan, H. L.; Chen, W.; Li, X. T.; Wang, T.; Zhang, C. H.; Huang, X. R. et al. Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers. Nat. Commun. 2018, 9, 5236.

[43]

Lv, F.; Feng, J. R.; Wang, K.; Dou, Z. P.; Zhang, W. Y.; Zhou, J. H.; Yang, C.; Luo, M. C.; Yang, Y.; Li, Y. J. et al. Iridium-tungsten alloy nanodendrites as pH-universal water-splitting electrocatalysts. ACS Cent. Sci. 2018, 4, 1244–1252.

[44]

Gago, A. S.; Bürkle, J.; Lettenmeier, P.; Morawietz, T.; Handl, M.; Hiesgen, R.; Burggraf, F.; Beltran, P. A. V.; Friedrich, K. A. Degradation of proton exchange membrane (PEM) electrolysis: The influence of current density. ECS Trans. 2018, 86, 695–700.

[45]

Cui, Z. H.; Oyer, A. J.; Glover, A. J.; Schniepp, H. C.; Adamson, D. H. Large scale thermal exfoliation and functionalization of boron nitride. Small 2014, 10, 2352–2355.

[46]

Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541.

[47]

Funke, H.; Scheinost, A. C.; Chukalina, M. Wavelet analysis of extended X-ray absorption fine structure data. Phys. Rev. B 2005, 71, 094110.

[48]

Mazúr, P.; Polonský, J.; Paidar, M.; Bouzek, K. Non-conductive TiO2 as the anode catalyst support for PEM water electrolysis. Int. J. Hydrogen Energy 2012, 37, 12081–12088.

[49]

Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.

[50]

Sun, W.; Wang, Z. Q.; Zaman, W. Q.; Zhou, Z. H.; Cao, L. M.; Gong, X. Q.; Yang, J. Effect of lattice strain on the electro-catalytic activity of IrO2 for water splitting. Chem. Commun. (Camb.) 2018, 54, 996–999.

[51]

Lee, K.; Flores, R. A.; Liu, Y. Z.; Wang, B. Y.; Hikita, Y.; Sinclair, R.; Bajdich, M.; Hwang, H. Y. Epitaxial stabilization and oxygen evolution reaction activity of metastable columbite iridium oxide. ACS Appl. Energy Mater. 2021, 4, 3074–3082.

[52]

Peuckert, M. XPS investigation of surface oxidation layers on a platinum electrode in alkaline solution. Electrochim. Acta 1984, 29, 1315–1320.

[53]

Merino, N. A.; Barbero, B. P.; Eloy, P.; Cadús, L. E. La1−xCaxCoO3 perovskite-type oxides: Identification of the surface oxygen species by XPS. Appl. Surf. Sci. 2006, 253, 1489–1493.

[54]

Lee, S. H.; Jeong, H.; Okello, O. F. N.; Xiao, S. Y.; Moon, S.; Kim, D. Y.; Kim, G. Y.; Lo, J. I.; Peng, Y. C.; Cheng, B. M. et al. Improvements in structural and optical properties of wafer-scale hexagonal boron nitride film by post-growth annealing. Sci. Rep. 2019, 9, 10590.

[55]

Preobrajenski, A. B.; Vinogradov, A. S.; Mårtensson, N. Ni 3d–BN π hybridization at the h-BN/Ni (111) interface observed with core-level spectroscopies. Phys. Rev. B 2004, 70, 165404.

[56]

Nattino, F.; Marzari, N. Operando XANES from first-principles and its application to iridium oxide. Phys. Chem. Chem. Phys. 2020, 22, 10807–10818.

[57]

Shi, Z. P.; Wang, Y.; Li, J.; Wang, X.; Wang, Y. B.; Li, Y.; Xu, W. L.; Jiang, Z.; Liu, C. P.; Xing, W. et al. Confined Ir single sites with triggered lattice oxygen redox: Toward boosted and sustained water oxidation catalysis. Joule 2021, 5, 2164–2176.

[58]

Kasian, O.; Grote, J. P.; Geiger, S.; Cherevko, S.; Mayrhofer, K. J. J. The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on iridium. Angew. Chem., Int. Ed. 2018, 57, 2488–2491.

[59]

She, L. N.; Zhao, G. Q.; Ma, T. Y.; Chen, J.; Sun, W. P.; Pan, H. G. On the durability of iridium-based electrocatalysts toward the oxygen evolution reaction under acid environment. Adv. Funct. Mater. 2022, 32, 2108465.

[60]

Bhattacharyya, K.; Poidevin, C.; Auer, A. A. Structure and reactivity of IrOx nanoparticles for the oxygen evolution reaction in electrocatalysis: An electronic structure theory study. J. Phys. Chem. C 2021, 125, 4379–4390.

[61]

Sharninghausen, L. S.; Sinha, S. B.; Shopov, D. Y.; Mercado, B. Q.; Balcells, D.; Brudvig, G. W.; Crabtree, R. H. Synthesis and characterization of iridium(V) coordination complexes with an N, O-donor organic ligand. Angew. Chem., Int. Ed. 2017, 56, 13047–13051.

[62]

Jovanovič, P.; Hodnik, N.; Ruiz-Zepeda, F.; Arčon, I.; Jozinović, B.; Zorko, M.; Bele, M.; Šala, M.; Šelih, V. S.; Hočevar, S. et al. Electrochemical dissolution of iridium and iridium oxide particles in acidic media: Transmission electron microscopy, electrochemical flow cell coupled to inductively coupled plasma mass spectrometry, and X-ray absorption spectroscopy study. J. Am. Chem. Soc. 2017, 139, 12837–12846.

[63]

Zhao, G. Q.; Li, P.; Cheng, N. Y.; Dou, S. X.; Sun, W. P. An Ir/Ni(OH)2 heterostructured electrocatalyst for the oxygen evolution reaction: Breaking the scaling relation, stabilizing iridium(V), and beyond. Adv. Mater. 2020, 32, 2000872.

[64]

Gao, J. J.; Xu, C. Q.; Hung, S. F.; Liu, W.; Cai, W. Z.; Zeng, Z. P.; Jia, C. M.; Chen, H. M.; Xiao, H.; Li, J. et al. Breaking long-range order in iridium oxide by alkali ion for efficient water oxidation. J. Am. Chem. Soc. 2019, 141, 3014–3023.

Nano Research
Pages 4767-4774
Cite this article:
Zhao G, Luo Z, Zhang B, et al. Epitaxial interface stabilizing iridium dioxide toward the oxygen evolution reaction under high working potentials. Nano Research, 2023, 16(4): 4767-4774. https://doi.org/10.1007/s12274-022-5240-3
Topics:

1071

Views

20

Crossref

19

Web of Science

20

Scopus

0

CSCD

Altmetrics

Received: 04 October 2022
Revised: 20 October 2022
Accepted: 22 October 2022
Published: 11 January 2023
© Tsinghua University Press 2022
Return