AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Laser trimming for lithography-free fabrications of MoS2 devices

Yong Xie1,2( )Onur Çakıroğlu2Wenshuai Hu1Kexin He1Sergio Puebla2Thomas Pucher2Qinghua Zhao2Xiaohua Ma1Carmen Munuera2Andres Castellanos-Gomez2 ( )
Key Laboratory of Wide Band-Gap Semiconductor Technology, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710071, China
Materials Science Factory, Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
Show Author Information

Graphical Abstract

We demonstrate the efficient laser trimming of mechanically exfoliated MoS2 to disconnect single-layer from multilayered regions for the fabrication of lithography-free electrical and optoelectronic devices.

Abstract

Single-layer MoS2 produced by mechanical exfoliation is usually connected to thicker and multilayer regions. We show a facile laser trimming method to insulate single-layer MoS2 regions from thicker ones. We demonstrate, through electrical characterization, that the laser trimming method can be used to pattern single-layer MoS2 channels with regular geometry and electrically disconnected from the thicker areas. Scanning photocurrent microscope further confirms that in the as-deposited flake (connected to a multilayer area) most of the photocurrent is being generated in the thicker flake region. After laser trimming, scanning photocurrent microscopy shows how only the single-layer MoS2 region contributes to the photocurrent generation. The presented method is a direct-write and lithography-free (no need of resist or wet chemicals) alternative to reactive ion etching process to pattern the flakes that can be easily adopted by many research groups fabricating devices with MoS2 and similar two-dimensional materials.

Electronic Supplementary Material

Download File(s)
12274_2022_5241_MOESM1_ESM.pdf (1.1 MB)

References

[1]

Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

[2]

Frisenda, R.; Navarro-Moratalla, E.; Gant, P.; De Lara, D. P.; Jarillo-Herrero, P.; Gorbachev, R. V.; Castellanos-Gomez, A. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 2018, 47, 53–68.

[3]

Lemme, M. C.; Akinwande, D.; Huyghebaert, C.; Stampfer, C. 2D materials for future heterogeneous electronics. Nat. Commun. 2022, 13, 1392.

[4]

Pu, J.; Takenobu, T. Monolayer transition metal dichalcogenides as light sources. Adv. Mater. 2018, 30, 1707627.

[5]

Kwon, G.; Choi, Y. H.; Lee, H.; Kim, H. S.; Jeong, J.; Jeong, K.; Baik, M.; Kwon, H.; Ahn, J.; Lee, E. et al. Interaction- and defect-free van der Waals contacts between metals and two-dimensional semiconductors. Nat. Electron. 2022, 5, 241–247.

[6]

Poddar, P. K.; Zhong, Y.; Mannix, A. J.; Mujid, F.; Yu, J.; Liang, C.; Kang, J. H.; Lee, M.; Xie, S. E.; Park, J. Resist-free lithography for monolayer transition metal dichalcogenides. Nano Lett. 2022, 22, 726–732.

[7]

Liu, J.; Choi, G. M.; Cahill, D. G. Measurement of the anisotropic thermal conductivity of molybdenum disulfide by the time-resolved magneto-optic Kerr effect. J. Appl. Phys. 2014, 116, 233107.

[8]

Jo, I.; Pettes, M. T.; Ou, E.; Wu, W.; Shi, L. Basal-plane thermal conductivity of few-layer molybdenum disulfide. Appl. Phys. Lett. 2014, 104, 201902.

[9]

Kim, S. E.; Mujid, F.; Rai, A.; Eriksson, F.; Suh, J.; Poddar, P.; Ray, A.; Park, C.; Fransson, E.; Zhong, Y. et al. Extremely anisotropic van der Waals thermal conductors. Nature 2021, 597, 660–665.

[10]

Zhou, Y.; Dong, Z. Y.; Hsieh, W. P.; Goncharov, A. F.; Chen, X. J. Thermal conductivity of materials under pressure. Nat. Rev. Phys. 2022, 4, 319–335.

[11]

Castellanos-Gomez, A.; Barkelid, M.; Goossens, A. M.; Calado, V. E.; van der Zant, H. S. J.; Steele, G. A. Laser-thinning of MoS2: On demand generation of a single-layer semiconductor. Nano Lett. 2012, 12, 3187–3192.

[12]

Taghavi, N. S.; Gant, P.; Huang, P.; Niehues, I.; Schmidt, R.; de Vasconcellos, S. M.; Bratschitsch, R.; García-Hernández, M.; Frisenda, R.; Castellanos-Gomez, A. Thickness determination of MoS2, MoSe2, WS2 and WSe2 on transparent stamps used for deterministic transfer of 2D materials. Nano Res. 2019, 12, 1691–1695.

[13]

Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; van der Zant, H. S. J.; Steele, G. A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 2014, 1, 011002.

[14]

Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696–700.

[15]

Reuter, C.; Frisenda, R.; Lin, D. Y.; Ko, T. S.; de Lara, D. P.; Castellanos-Gomez, A. A versatile scanning photocurrent mapping system to characterize optoelectronic devices based on 2D materials. Small Methods 2017, 1, 1700119.

[16]

Riccardo, R.; Yue, N.; Gant, P.; Molina-Mendoza, A. J.; Schmidt, R.; Bratschitsch, R.; Liu, J. X.; Fu, L.; Dumcenco, D.; Kis, A. et al. Micro-reflectance and transmittance spectroscopy: A versatile and powerful tool to characterize 2D materials. J. Phys. D: Appl. Phys. 2017, 50, 074002.

[17]

Yang, R.; Zheng, X. Q.; Wang, Z. H.; Miller, C. J.; Feng, P. X. L. Multilayer MoS2 transistors enabled by a facile dry-transfer technique and thermal annealing. J. Vac. Sci. Technol. B 2014, 32, 061203.

[18]

Radisavljevic, B.; Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 2013, 12, 815–820.

Nano Research
Pages 5042-5046
Cite this article:
Xie Y, Çakıroğlu O, Hu W, et al. Laser trimming for lithography-free fabrications of MoS2 devices. Nano Research, 2023, 16(4): 5042-5046. https://doi.org/10.1007/s12274-022-5241-2
Topics:

3038

Views

501

Downloads

3

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 18 July 2022
Revised: 13 October 2022
Accepted: 25 October 2022
Published: 21 December 2022
© The author(s) 2022

Copyright: © 2022 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return