AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

K-modified MnOδ catalysts with tunnel structure and layered structure: Facile preparation and catalytic performance for soot combustion

Chao Peng1,§Yu Ren2,§Di Yu2Lanyi Wang2Chunlei Zhang1Xiaoqiang Fan1Xuehua Yu1( )Zhen Zhao1,2( )Yuechang Wei2Jian Liu2
Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China

§ Chao Peng and Yu Ren contributed equally to this work.

Show Author Information

Graphical Abstract

A series of K-modified MnOδ catalysts with different microstructures were synthesized by the hydrothermal method and they exhibit excellent catalytic performance for soot combustion. The reasons for high catalytic activities are related to excellent NO oxidation capacity, abundant Mn4+ ions, and surface reactive oxygen species.

Abstract

Air pollution from particulate matter produced by incomplete combustion of diesel fuel has become a serious environmental pollution problem, which can be addressed by catalytic combustion. In this work, a series of K-modified MnOδ catalysts with different microstructures were synthesized by the hydrothermal method, and the relationship between structure of the catalysts and their catalytic performance for soot combustion was studied by characterization techniques and density functional theory (DFT) calculations. Results showed that the prepared catalysts had good catalytic performance for soot combustion and could completely oxidize soot at temperatures below 400 °C. The cryptomelane-type K2−xMn8O16 (K-OMS-2) with tunnel structure had excellent NO oxidation capacity and abundance of Mn4+ ions (Mn4+/Mn3+ = 1.24) with good redox ability, and it demonstrated better soot combustion performance than layered birnessite-type K2Mn4O8 (K-OL-1). The T10, T50, and T90 temperatures of K-OMS-2 were 269, 314, and 346 °C, respectively. The K-OMS-2 catalyst also showed excellent stability after five catalytic cycles, with T10, T50, and T90 values holding in the ranges of 270 ± 2, 316 ± 2, and 348 ± 3 °C, respectively.

Electronic Supplementary Material

Download File(s)
12274_2022_5242_MOESM1_ESM.pdf (1.3 MB)

References

[1]

Wei, Y. C.; Zhang, P.; Xiong, J.; Yu, Q.; Wu, Q. Q.; Zhao, Z.; Liu, J. SO2-tolerant catalytic removal of soot particles over 3D ordered macroporous Al2O3-supported binary Pt-Co oxide catalysts. Environ. Sci. Technol. 2020, 54, 6947–6956.

[2]

Liu, S.; Wu, X. D.; Weng, D.; Li, M.; Ran, R. Roles of acid sites on Pt/H-ZSM5 catalyst in catalytic oxidation of diesel soot. ACS Catal. 2018, 5, 909–919.

[3]

Wei, Y. C.; Zhang, Y. L.; Zhang, P.; Xiong, J.; Mei, X. L.; Yu, Q.; Zhao, Z.; Liu, J. Boosting the removal of diesel soot particles by the optimal exposed crystal facet of CeO2 in Au/CeO2 catalysts. Environ. Sci. Technol. 2020, 54, 2002–2011.

[4]

Wagloehner, S.; Nitzer-Noski, M.; Kureti, S. Oxidation of soot on manganese oxide catalysts. Chem. Eng. J. 2015, 259, 492–504.

[5]

Peng, C.; Yu, D.; Wang, L. Y.; Yu, X. H.; Zhao, Z. Recent advances in the preparation and catalytic performance of Mn-based oxide catalysts with special morphologies for the removal of air pollutants. J. Mater. Chem. A 2021, 9, 12947–12980.

[6]

Gentner, D. R.; Jathar, S. H.; Gordon, T. D.; Bahreini, R.; Day, D. A.; El Haddad, I.; Hayes, P. L.; Pieber, S. M.; Platt, S. M.; de Gouw, J. et al. Review of urban secondary organic aerosol formation from gasoline and diesel motor vehicle emissions. Environ. Sci. Technol. 2017, 51, 1074–1093.

[7]

Dhal, G. C.; Mohan, D.; Prasad, R. Preparation and application of effective different catalysts for simultaneous control of diesel soot and NOx emissions: An overview. Catal. Sci. Technol. 2017, 7, 1803–1825.

[8]

Frank, B.; Schuster, M. E.; Schlögl, R.; Su, D. S. Emission of highly activated soot particulate-the other side of the coin with modern diesel engines. Angew. Chem., Int. Ed. 2013, 52, 2673–2677.

[9]

Wu, Q. Q.; Xiong, J.; Zhang, Y. L.; Mei, X. L.; Wei, Y. C.; Zhao, Z.; Liu, J.; Li, J. M. Interaction-induced self-assembly of Au@La2O3 core–shell nanoparticles on La2O2CO3 nanorods with enhanced catalytic activity and stability for soot oxidation. ACS Catal. 2019, 9, 3700–3715.

[10]

Xiong, J.; Mei, X. L.; Liu, J.; Wei, Y. C.; Zhao, Z.; Xie, Z. A.; Li, J. M. Efficiently multifunctional catalysts of 3D ordered meso-macroporous Ce0.3Zr0.7O2-supported PdAu@CeO2 core–shell nanoparticles for soot oxidation: Synergetic effect of Pd-Au-CeO2 ternary components. Appl. Catal. B Environ. 2019, 251, 247–260.

[11]

di Sarli, V.; di Benedetto, A. Modeling and simulation of soot combustion dynamics in a catalytic diesel particulate filter. Chem. Eng. Sci. 2015, 137, 69–78.

[12]

Fino, D.; Bensaid, S.; Piumetti, M.; Russo, N. A review on the catalytic combustion of soot in diesel particulate filters for automotive applications: From powder catalysts to structured reactors. Appl. Catal. A Gen. 2016, 509, 75–96.

[13]

Ren, W.; Ding, T.; Yang, Y. X.; Xing, L. L.; Cheng, Q. P.; Zhao, D. Y.; Zhang, Z. L.; Li, Q.; Zhang, J.; Zheng, L. R. et al. Identifying oxygen activation/oxidation sites for efficient soot combustion over silver catalysts interacted with nanoflower-like hydrotalcite-derived CoAlO metal oxides. ACS Catal. 2019, 9, 8772–8784.

[14]

Gryboś, J.; Fedyna, M.; Legutko, P.; Leszczyński, B.; Janas, J.; Wach, A.; Szlachetko, J.; Yu, X. H.; Kotarba, A.; Zhao, Z. et al. Mechanistic insights into oxygen dynamics in soot combustion over cryptomelane catalysts in tight and loose contact modes via 18O2/16O2 isotopic variable composition measurements-a hot ring model of the catalyst operation. ACS Catal. 2021, 11, 9530–9546.

[15]

Andana, T.; Piumetti, M.; Bensaid, S.; Veyre, L.; Thieuleux, C.; Russo, N.; Fino, D.; Quadrelli, E. A.; Pirone, R. Nanostructured equimolar ceria-praseodymia for NOx-assisted soot oxidation: Insight into Pr dominance over Pt nanoparticles and metal-support interaction. Appl. Catal. B Environ. 2018, 226, 147–161.

[16]

Zhang, M. S.; Jin, B. F.; Liu, Y.; Liu, W.; Weng, D.; Wu, X. D.; Liu, S. Ozone activated Ag/CeO2 catalysts for soot combustion: The surface and structural influences. Chem. Eng. J. 2019, 375, 121961.

[17]

Serve, A.; Boreave, A.; Cartoixa, B.; Pajot, K.; Vernoux, P. Synergy between Ag nanoparticles and yttria-stabilized zirconia for soot oxidation. Appl. Catal. B Environ. 2019, 242, 140–149.

[18]

Zhao, P.; Feng, N. J.; Fang, F.; Liu, G.; Chen, L.; Meng, J.; Chen, C.; Wang, L.; Wan, H.; Guan, G. F. Facile synthesis of three-dimensional ordered macroporous Sr1−xKxTiO3 perovskites with enhanced catalytic activity for soot combustion. Catal. Sci. Technol. 2018, 8, 5462–5472.

[19]

Andana, T.; Piumetti, M.; Bensaid, S.; Veyre, L.; Thieuleux, C.; Russo, N.; Fino, D.; Quadrelli, E. A.; Pirone, R. CuO nanoparticles supported by ceria for NOx-assisted soot oxidation: Insight into catalytic activity and sintering. Appl. Catal. B Environ. 2017, 216, 41–58.

[20]

Fang, F.; Feng, N. J.; Zhao, P.; Chen, C.; Li, X.; Meng, J.; Liu, G.; Chen, L.; Wan, H.; Guan, G. F. In situ exsolution of Co/CoOx core–shell nanoparticles on double perovskite porous nanotubular webs:A synergistically active catalyst for soot efficient oxidation. Chem. Eng. J. 2019, 372, 752–764.

[21]

Wang, X.; Jin, B. F.; Feng, R. X.; Liu, W.; Weng, D.; Wu, X. D.; Liu, S. A robust core–shell silver soot oxidation catalyst driven by Co3O4: Effect of tandem oxygen delivery and Co3O4-CeO2 synergy. Appl. Catal. B Environ. 2019, 250, 132–142.

[22]

Wang, J. G.; Yang, G. Y.; Cheng, L.; Shin, E. W.; Men, Y. Three-dimensionally ordered macroporous spinel-type MCr2O4 (M = Co, Ni, Zn, Mn) catalysts with highly enhanced catalytic performance for soot combustion. Catal. Sci. Technol. 2015, 5, 4594–4601.

[23]

Piumetti, M.; van der Linden, B.; Makkee, M.; Miceli, P.; Fino, D.; Russo, N.; Bensaid, S. Contact dynamics for a solid–solid reaction mediated by gas-phase oxygen: Study on the soot oxidation over ceria-based catalysts. Appl. Catal. B Environ. 2016, 199, 96–107.

[24]

Yang, Z. Z.; Hu, W.; Zhang, N.; Li, Y. X.; Liao, Y. W. Facile synthesis of ceria-zirconia solid solutions with cubic-tetragonal interfaces and their enhanced catalytic performance in diesel soot oxidation. J. Catal. 2019, 377, 98–109.

[25]

Wei, W. F.; Cui, X. W.; Chen, W. X.; Ivey, D. G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 2011, 40, 1697–1721.

[26]

Shen, Y. F.; Zerger, R. P.; Deguzman, R. N.; Suib, S. L.; McCurdy, L.; Potter, D. I.; O’Young, C. L. Manganese oxide octahedral molecular sieves: Preparation, characterization, and applications. Science, 1993, 260, 511–515.

[27]

Luo, T. Y.; Liu, S. R.; Li, M.; Liu, W.; Wu, X. D.; Liu, S. Ozone-assisted diesel soot combustion over Mn2O3 catalysts: A tandem work of different reactive phases. J. Catal. 2022, 408, 56–63.

[28]

Wasalathanthri, N. D.; SantaMaria, T. M.; Kriz, D. A.; Dissanayake, S. L.; Kuo, C. H.; Biswas, S.; Suib, S. L. Mesoporous manganese oxides for NO2 assisted catalytic soot oxidation. Appl. Catal. B Environ. 2017, 201, 543–551.

[29]

Ching, S.; Welch, E. J.; Hughes, S. M.; Bahadoor, A. B. F.; Suib, S. L. Nonaqueous sol-gel syntheses of microporous manganese oxides. Chem. Mater. 2002, 14, 1292–1299.

[30]

Wang, R.; Li, J. H. Effects of precursor and sulfation on OMS-2 catalyst for oxidation of ethanol and acetaldehyde at low temperatures. Environ. Sci. Technol. 2010, 44, 4282–4287.

[31]

Luo, J.; Zhang, Q. H.; Garcia-martinez, J.; Suib, S. L. Adsorptive and acidic properties, reversible lattice oxygen evolution, and catalytic mechanism of cryptomelane-type manganese oxides as oxidation catalysts. J. Am. Chem. Soc. 2008, 130, 3198–3207.

[32]

Legutko, P.; Jakubek, T.; Kaspera, W.; Stelmachowski, P.; Sojka, Z.; Kotarba, A. Soot oxidation over K-doped manganese and iron spinels—How potassium precursor nature and doping level change the catalyst activity. Catal. Commun. 2014, 43, 34–37.

[33]

Kimura, R.; Wakabayashi, J.; Elangovan, S. P.; Ogura, M.; Okubo, T. Nepheline from K2CO3/nanosized sodalite as a prospective candidate for diesel soot combustion. J. Am. Chem. Soc. 2008, 130, 12844–12845.

[34]

Ura, B.; Trawczyński, J.; Kotarba, A.; Bieniasz, W.; Illán-Gómez, M. J.; Bueno-López, A.; López-Suárez, F. E. Effect of potassium addition on catalytic activity of SrTiO3 catalyst for diesel soot combustion. Appl. Catal. B Environ. 2011, 101, 169–175.

[35]

Castoldi, L.; Matarrese, R.; Lietti, L.; Forzatti, P. Intrinsic reactivity of alkaline and alkaline-earth metal oxide catalysts for oxidation of soot. Appl. Catal. B Environ. 2009, 90, 278–285.

[36]

Shao, J.; Lan, X. E.; Zhang, C. X.; Cao, C. M.; Yu, Y. F. Recent advances in soot combustion catalysts with designed micro-structures. Chin. Chem. Lett. 2022, 33, 1763–1771.

[37]

Yu, D.; Ren, Y.; Yu, X. H.; Fan, X. Q.; Wang, L. Y.; Wang, R. D.; Zhao, Z.; Cheng, K.; Chen, Y. S.; Sojka, Z. et al. Facile synthesis of birnessite-type K2Mn4O8 and cryptomelane-type K2−xMn8O16 catalysts and their excellent catalytic performance for soot combustion with high resistance to H2O and SO2. Appl. Catal. B Environ. 2021, 285, 119779.

[38]

Zhang, Z. L.; Han, D.; Wei, S. J.; Zhang, Y. X. Determination of active site densities and mechanisms for soot combustion with O2 on Fe-doped CeO2 mixed oxides. J. Catal. 2010, 276, 16–23.

[39]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[40]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[41]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[42]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[43]

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

[44]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[45]

Cheng, L.; Men, Y.; Wang, J. G.; Wang, H.; An, W.; Wang, Y. Q.; Duan, Z. C.; Liu, J. Crystal facet-dependent reactivity of α-Mn2O3 microcrystalline catalyst for soot combustion. Appl. Catal. B Environ. 2017, 204, 374–384.

[46]

Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[47]

Shi, Q. L.; Liu, T. Z.; Li, Q.; Xin, Y.; Lu, X. X.; Tang, W. X.; Zhang, Z. L.; Gao, P. X.; Anderson, J. A. Multiple strategies to decrease ignition temperature for soot combustion on ultrathin MnO2−x nanosheet array. Appl. Catal. B Environ. 2019, 246, 312–321.

[48]

Yang, J.; Zhou, H.; Wang, L.; Zhang, Y. X.; Chen, C. L.; Hu, H. L.; Li, G. Z.; Zhang, Y. J.; Ma, Y. P.; Zhang, J. Cobalt-doped K-OMS-2 nanofibers: A novel and efficient water-tolerant catalyst for the oxidation of carbon monoxide. ChemCatChem 2017, 9, 1163–1167.

[49]

Morgan Chan, Z.; Kitchaev, D. A.; Nelson Weker, J.; Schnedermann, C.; Lim, K.; Ceder, G.; Tumas, W.; Toney, M. F.; Nocera, D. G. Electrochemical trapping of metastable Mn3+ ions for activation of MnO2 oxygen evolution catalysts. Proc. Natl. Acad. Sci. USA 2018, 115, E5261–E5268.

[50]

Hou, J. T.; Li, Y. Z.; Liu, L. L.; Ren, L.; Zhao, X. J. Effect of giant oxygen vacancy defects on the catalytic oxidation of OMS-2 nanorods. J. Mater. Chem. A 2013, 1, 6736–6741.

[51]

Yang, W. H.; Peng, Y.; Wang, Y.; Wang, Y.; Liu, H.; Su, Z. A.; Yang, W. N.; Chen, J. J.; Si, W. Z.; Li, J. H. Controllable redox-induced in-situ growth of MnO2 over Mn2O3 for toluene oxidation: Active heterostructure interfaces. Appl. Catal. B Environ. 2020, 278, 119279.

[52]

Gao, Y. B.; Wang, Z. P.; Cui, C. C.; Wang, B. Q.; Liu, W. X.; Liu, W.; Wang, L. G. Amorphous manganese oxide as highly active catalyst for soot oxidation. Environ. Sci. Pollut. Res. 2020, 27, 13488–13500.

[53]

Ji, F.; Men, Y.; Wang, J. G.; Sun, Y. L.; Wang, Z. D.; Zhao, B.; Tao. X. T.; Xu, G. J. Promoting diesel soot combustion efficiency by tailoring the shapes and crystal Facets of nanoscale Mn3O4. Appl. Catal. B Environ. 2019, 242, 227–237.

[54]

Yu, Q.; Xiong, J.; Li, Z. G.; Mei, X. L.; Zhang, P.; Zhang, Y. L.; Wei, Y. C.; Zhao, Z.; Liu, J. Optimal exposed crystal facets of α-Mn2O3 catalysts with enhancing catalytic performance for soot combustion. Catal. Today 2021, 376, 229–238.

[55]

Peng, C.; Yu, D.; Zhang, C. L.; Chen, M. Z.; Wang, L. Y.; Yu, X. H.; Fan, X. Q.; Zhao, Z.; Cheng. K.; Chen, Y. S. et al. Alkali/alkaline-earth metal-modified MnOx supported on three-dimensionally ordered macroporous-mesoporous TixSi1−xO2 catalysts: Preparation and catalytic performance for soot combustion. J. Environ. Sci. 2023, 125, 82–94.

[56]

Wang, M.; Zhang, Y.; Yu, Y. B.; Shan, W. P.; He, H. Synergistic effects of multicomponents produce outstanding soot oxidation activity in a Cs/Co/MnOx catalyst. Environ. Sci. Technol. 2021, 55, 240–248.

[57]

Xiong, J.; Li, Z. G.; Zhang, P.; Yu, Q.; Li, K. X.; Zhang, Y. L.; Zhao, Z.; Liu, J.; Li, J. M.; Wei, Y. C. Optimized Pt-MnOx interface in Pt-MnOx/3DOM-Al2O3 catalysts for enhancing catalytic soot combustion. Chin. Chem. Lett. 2021, 32, 1447–1450.

[58]

Xiong, J.; Wei, Y. C.; Zhang, Y. L.; Zhang, P.; Yu, Q.; Mei, X. L.; Liu, X.; Zhao, Z.; Liu, J. Synergetic effect of K sites and Pt nanoclusters in an ordered hierarchical porous Pt-KMnOx/Ce0.25Zr0.75O2 catalyst for boosting soot oxidation. ACS Catal. 2020, 10, 7123–7135.

[59]

Becerra, M. E.; Arias, N. P.; Giraldo, O. H.; Suárez, F. E. L.; Gómez, M. J. I.; López, A. B. Soot combustion manganese catalysts prepared by thermal decomposition of KMnO4. Appl. Catal. B Environ. 2011, 102, 260–266.

[60]

Atribak, I.; Bueno-López, A.; García-García, A.; Navarro, P.; Frías, D.; Montes, M. Catalytic activity for soot combustion of birnessite and cryptomelane. Appl. Catal. B Environ. 2010, 93, 267–273.

[61]

Zhang, Z. L.; Zhang, Y. X.; Wang, Z. P.; Gao, X. Y. Catalytic performance and mechanism of potassium-promoted Mg-Al hydrotalcite mixed oxides for soot combustion with O2. J. Catal. 2010, 271, 12–21.

[62]

Cao, C. M.; Li, X. G.; Zha, Y. Q.; Zhang, J.; Hu, T. D.; Meng, M. Crossed ferric oxide nanosheets supported cobalt oxide on 3-dimensional macroporous Ni foam substrate used for diesel soot elimination under self-capture contact mode. Nanoscale 2016, 8, 5857–5864.

[63]

Zhou, J.; Qin, L. F.; Xiao, W.; Zeng, C.; Li, N.; Lv, T.; Zhu, H. Oriented growth of layered-MnO2 nanosheets over α-MnO2 nanotubes for enhanced room-temperature HCHO oxidation. Appl. Catal. B Environ. 2017, 207, 233–243.

[64]

Yu, X. H.; Ren, Y.; Yu, D.; Chen, M. Z.; Wang, L. Y.; Wang, R. D.; Fan, X. Q.; Zhao, Z.; Cheng, K.; Chen, Y. S. et al. Hierarchical porous K-OMS-2/3DOM-m Ti0.7Si0.3O2 catalysts for soot combustion:Easy preparation, high catalytic activity, and good resistance to H2O and SO2. ACS Catal. 2021, 11, 5554–5571.

[65]

Hadjiivanov, K. I. Identification of neutral and charged NxOy surface species by IR spectroscopy. Catal. Rev. 2000, 42, 71–144.

[66]

Hu, H.; Cai, S. X.; Li, H. R.; Huang, L.; Shi, L. Y.; Zhang, D. S. In situ DRIFTs Investigation of the low-temperature reaction mechanism over Mn-doped Co3O4 for the selective catalytic reduction of NOx with NH3. J. Phys. Chem. C 2015, 119, 22924–22933.

[67]

Zhang, L.; Shi, L. Y.; Huang, L.; Zhang, J. P.; Gao, R. H.; Zhang, D. S. Rational design of high-performance DeNOx catalysts based on MnxCo3−xO4 nanocages derived from metal-organic frameworks. ACS Catal. 2014, 4, 1753–1763.

[68]

Li, X. G.; Dong, Y. H.; Xian, H.; Hernández, W. Y.; Meng, M.; Zou, H. H.; Ma, A. J.; Zhang, T. Y.; Jiang, Z.; Tsubaki, N. et al. De-NOx in alternative lean/rich atmospheres on La1−xSrxCoO3 perovskites. Energy Environ. Sci. 2011, 4, 3351–3354.

[69]

Wu, X. D.; Lin, F.; Xu, H. B.; Weng, D. Effects of adsorbed and gaseous NOx species on catalytic oxidation of diesel soot with MnOx-CeO2 mixed oxides. Appl. Catal. B Environ. 2010, 96, 101–109.

[70]

Aylor, A. W.; Lobree, L. J.; Reimer, J. A.; Bell, A. T. NO adsorption, desorption, and reduction by CH4 over Mn-ZSM-5. J Catal. 1997, 170, 390–401.

[71]

Wang, Z. M.; Tezuka, S.; Kanoh, H. Characterization of the structural and surface properties of a synthesized hydrous hollandite by gaseous molecular adsorption. Chem. Mater. 2001, 13, 530–537.

Nano Research
Pages 6187-6199
Cite this article:
Peng C, Ren Y, Yu D, et al. K-modified MnOδ catalysts with tunnel structure and layered structure: Facile preparation and catalytic performance for soot combustion. Nano Research, 2023, 16(5): 6187-6199. https://doi.org/10.1007/s12274-022-5242-1
Topics:
Part of a topical collection:

2718

Views

10

Crossref

8

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 31 August 2022
Revised: 19 October 2022
Accepted: 25 October 2022
Published: 14 December 2022
© Tsinghua University Press 2022
Return