AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nanowires mediated growth of β-Ga2O3 nanobelts for high-temperature (> 573 K) solar-blind photodetectors

Xiaobin Zou1Dongyu Xie2Yong Sun1( )Chengxin Wang1( )
State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
State Key Laboratory of Optoelectronic Materials and Technologies and Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
Show Author Information

Graphical Abstract

Nanowire-mediated high-quality ultralong β-Ga2O3 nanobelts were achieved via a simple catalyst-free chemical vapor deposition route, which exhibited excellent mechanical properties. The photodetectors based on the nanobelts show high sensitivity, high signal-to-noise ratio, high spectral selectivity, and high stability from room temperature to 573 K.

Abstract

β-Ga2O3, with ultra-wide bandgap, high absorption coefficient for high-energy ultraviolet (UV) photons, and high structural stability toward harsh-environment, has been receiving persistent attention for deep ultraviolet photodetectors applications. However, realization of devices with high tolerance toward high temperature faces great challenges due to considerable background signals mainly arising from abundant thermal excited carrier. Herein, nanowire-mediated high-quality β-Ga2O3 nanobelts with ultra-thin thickness and length up to several hundred micrometers were achieved via a simple catalyst-free chemical vapor deposition route. The resulted microdevice output superior optoelectric figure of merits among numerous reports about β-Ga2O3, i.e., ultra-low dark current (below the detection limit of 10−12 A), high responsivity (1,320 A/W), and high spectral selectivity working under low voltage (~ 2 V). More importantly, the performance remains robust at elevated temperature higher than 573 K. These results indicate a large prospect for low-voltage driven deep ultraviolet photodetectors with good sensitivity and stability at harsh environments.

Electronic Supplementary Material

Download File(s)
12274_2022_5243_MOESM1_ESM.pdf (946.2 KB)

References

[1]

Xu, J. J.; Zheng, W.; Huang, F. Gallium oxide solar-blind ultraviolet photodetectors: A review. J. Mater. Chem. C 2019, 7, 8753–8770.

[2]

Xie, C.; Lu, X. T.; Tong, X. W.; Zhang, Z. X.; Liang, F. X.; Liang, L.; Luo, L. B.; Wu, Y. C. Recent progress in solar-blind deep-ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors. Adv. Funct. Mater. 2019, 29, 1806006.

[3]

Kaur, D.; Kumar, M. A strategic review on gallium oxide based deep-ultraviolet photodetectors: Recent progress and future prospects. Adv. Opt. Mater. 2021, 9, 2002160.

[4]

Gong, C. H.; Chu, J. W.; Qian, S. F.; Yin, C. J.; Hu, X. Z.; Wang, H. B.; Wang, Y.; Ding, X.; Jiang, S. C.; Li, A. L. et al. Large-scale ultrathin 2D wide-bandgap BiOBr nanoflakes for gate-controlled deep-ultraviolet phototransistors. Adv. Mater. 2020, 32, 1908242.

[5]

Yang, F.; Zheng, Z. Q.; He, Y.; Liu, P.; Yang, G. W. A new wide bandgap semiconductor: Carbyne nanocrystals. Adv. Funct. Mater. 2021, 31, 2104254.

[6]

Yang, T.; Chen, S. L.; Li, X. X.; Xu, X. J.; Gao, F. M.; Wang, L.; Chen, J. H.; Yang, W. Y.; Hou, X. M.; Fang, X. S. High-performance SiC nanobelt photodetectors with long-term stability against 300 °C up to 180 days. Adv. Funct. Mater. 2019, 29, 1806250.

[7]

Yuan, Y.; Hao, W. B.; Mu, W. X.; Wang, Z. P.; Chen, X. H.; Liu, Q.; Xu, G. W.; Wang, C. L.; Zhou, H.; Zou, Y. N. et al. Toward emerging gallium oxide semiconductors: A roadmap. Fundam. Res. 2021, 1, 697–716.

[8]

Li, Q.; Lin, J.; Liu, T. Y.; Zhu, X. Y.; Yao, W. H.; Liu, J. Gas-mediated liquid metal printing toward large-scale 2D semiconductors and ultraviolet photodetector. npj 2D Mater. Appl. 2021, 5, 36.

[9]

Kong, W. Y.; Wu, G. A.; Wang, K. Y.; Zhang, T. F.; Zou, Y. F.; Wang, D. D.; Luo, L. B. Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application. Adv. Mater. 2016, 28, 10725–10731.

[10]

Yu, S. J.; Zhao, X. L.; Ding, M. F.; Tan, P. J.; Hou, X. H.; Zhang, Z. F.; Mu, W. X.; Jia, Z. T.; Tao, X. T.; Xu, G. W. et al. High-detectivity β-Ga2O3 microflake solar-blind phototransistor for weak light detection. IEEE Electron Device Lett. 2021, 42, 383–386.

[11]

Chen, C.; Zhao, X. L.; Hou, X. H.; Yu, S. J.; Chen, R.; Zhou, X. Z.; Tan, P. J.; Liu, Q.; Mu, W. X.; Jia, Z. T. et al. High-performance β-Ga2O3 solar-blind photodetector with extremely low working voltage. IEEE Electron Device Lett. 2021, 42, 1492–1495.

[12]

Sutter, E.; Idrobo, J. C.; Sutter, P. Synthesis and optoelectronic properties of ultrathin Ga2O3 nanowires. J. Mater. Chem. C 2020, 8, 11555–11562.

[13]

Hou, X. H.; Zhao, X. L.; Zhang, Y.; Zhang, Z. F.; Liu, Y.; Qin, Y.; Tan, P. J.; Chen, C.; Yu, S. J.; Ding, M. F. et al. High-performance harsh-environment-resistant GaOx solar-blind photodetectors via defect and doping engineering. Adv. Mater. 2022, 34, 2106923.

[14]

Xie, C.; Lu, X. T.; Ma, M. R.; Tong, X. W.; Zhang, Z. X.; Wang, L.; Wu, C. Y.; Yang, W. H.; Luo, L. B. Catalyst-free vapor-solid deposition growth of β-Ga2O3 nanowires for DUV photodetector and image sensor application. Adv. Opt. Mater. 2019, 7, 1901257.

[15]

Wu, Z. Y.; Jiang, Z. X.; Song, P. Y.; Tian, P. F.; Hu, L. G.; Liu, R.; Fang, Z. L.; Kang, J. Y.; Zhang, T. Y. Nanowire-seeded growth of single-crystalline (010) β-Ga2O3 nanosheets with high field-effect electron mobility and on/off current ratio. Small 2019, 15, 1900580.

[16]

Li, S.; Yue, J. Y.; Ji, X. Q.; Lu, C.; Yan, Z. Y.; Li, P. G.; Guo, D. Y.; Wu, Z. P.; Tang, W. H. Oxygen vacancies modulating the photodetector performances in ε-Ga2O3 thin films. J. Mater. Chem. C 2021, 9, 5437–5444.

[17]

Wang, Z. P.; Chen, X. H.; Ren, F. F.; Gu, S. L.; Ye, J. D. Deep-level defects in gallium oxide. J. Phys. D: Appl. Phys. 2021, 54, 043002.

[18]

Zhou, H. T.; Cong, L. J.; Ma, J. G.; Li, B. S.; Chen, M. Z.; Xu, H. Y.; Liu, Y. C. High gain broadband photoconductor based on amorphous Ga2O3 and suppression of persistent photoconductivity. J. Mater. Chem. C 2019, 7, 13149–13155.

[19]

Han, Z. Y.; Liang, H. L.; Huo, W. X.; Zhu, X. S.; Du, X. L.; Mei, Z. X. Boosted UV photodetection performance in chemically etched amorphous Ga2O3 thin-film transistors. Adv. Opt. Mater. 2020, 8, 1901833.

[20]

Tak, B. R.; Garg, M.; Dewan, S.; Torres-Castanedo, C. G.; Li, K. H.; Gupta, V.; Li, X. H.; Singh, R. High-temperature photocurrent mechanism of β-Ga2O3 based metal-semiconductor-metal solar-blind photodetectors. J. Appl. Phys. 2019, 125, 144501.

[21]

Sun, Y.; Chen, Y. M.; Cui, H.; Wang, J.; Wang, C. X. Ultralarge bending strain and fracture-resistance investigation of tungsten carbide nanowires. Small 2017, 13, 1700389.

[22]

Sun, Y.; Sun, B.; He, J. B.; Yang, G. W.; Wang, C. X. Millimeters long super flexible Mn5Si3@SiO2 electrical nanocables applicable in harsh environments. Nat. Commun. 2020, 11, 647.

[23]

Li, Y. B.; Tokizono, T.; Liao, M. Y.; Zhong, M.; Koide, Y.; Yamada, I.; Delaunay, J. J. Efficient assembly of bridged β-Ga2O3 nanowires for solar-blind photodetection. Adv. Funct. Mater. 2010, 20, 3972–3978.

[24]

Sun, J. M.; Han, M. M.; Peng, M.; Zhang, L.; Liu, D.; Miao, C. C.; Ye, J. F.; Pang, Z. Y.; He, L. B.; Wang, H. L. et al. Stoichiometric effect on electrical and near-infrared photodetection properties of full-composition-range GaAs1−xSbx nanowires. Nano Res. 2021, 14, 3961–3968.

[25]

Yin, Y. X.; Guo, Y. N.; Liu, D.; Miao, C. C.; Liu, F. J.; Zhuang, X. M.; Tan, Y.; Chen, F.; Yang, Z. X. Substrate-free chemical vapor deposition of large-scale III-V nanowires for high-performance transistors and broad-spectrum photodetectors. Adv. Opt. Mater. 2022, 10, 2102291.

[26]

Liu, D.; Liu, F. J.; Liu, Y.; Pang, Z. Y.; Zhuang, X. M.; Yin, Y. X.; Dong, S. P.; He, L. B.; Tan, Y.; Liao, L. et al. Schottky-contacted high-performance GaSb nanowires photodetectors enabled by lead-free all-inorganic perovskites decoration. Small 2022, 18, 2200415.

[27]

Qin, Y.; Li, L. H.; Zhao, X. L.; Tompa, G. S.; Dong, H.; Jian, G. Z.; He, Q. M.; Tan, P. J.; Hou, X. H.; Zhang, Z. F. et al. Metal-semiconductor-metal ε-Ga2O3 solar-blind photodetectors with a record-high responsivity rejection ratio and their gain mechanism. ACS Photonics 2020, 7, 812–820.

[28]

Armstrong, A. M.; Crawford, M. H.; Jayawardena, A.; Ahyi, A.; Dhar, S. Role of self-trapped holes in the photoconductive gain of β-gallium oxide Schottky diodes. J. Appl. Phys. 2016, 119, 103102.

[29]

Varley, J. B.; Janotti, A.; Franchini, C.; Van de Walle, C. G. Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides. Phys. Rev. B 2012, 85, 081109.

[30]

Kananen, B. E.; Giles, N. C.; Halliburton, L. E.; Foundos, G. K.; Chang, K. B.; Stevens, K. T. Self-trapped holes in β-Ga2O3 crystals. J. Appl. Phys. 2017, 122, 215703.

[31]

Peng, Y. K.; Zhang, Y.; Chen, Z. W.; Guo, D. Y.; Zhang, X.; Li, P. G.; Wu, Z. P.; Tang, W. H. Arrays of solar-blind ultraviolet photodetector based on β-Ga2O3 epitaxial thin films. IEEE Photonics Technol. Lett. 2018, 30, 993–996.

[32]

Cui, S. J.; Mei, Z. X.; Zhang, Y. H.; Liang, H. L.; Du, X. L. Room-temperature fabricated amorphous Ga2O3 high-response-speed solar-blind photodetector on rigid and flexible substrates. Adv. Opt. Mater. 2017, 5, 1700454.

[33]

Zhang, Z.; Farzana, E.; Arehart, A. R.; Ringel, S. A. Deep level defects throughout the bandgap of (010) β-Ga2O3 detected by optically and thermally stimulated defect spectroscopy. Appl. Phys. Lett. 2016, 108, 052105.

[34]

Zou, R.; Zhang, Z.; Liu, Q.; Hu, J.; Sang, L.; Liao, M.; Zhang, W. High detectivity solar-blind high-temperature deep-ultraviolet photodetector based on multi-layered (l00) facet-oriented β-Ga2O3 nanobelts. Small 2014, 10, 1848–1856.

[35]

Feng, P.; Zhang, J. Y.; Li, Q. H.; Wang, T. H. Individual β-Ga2O3 nanowires as solar-blind photodetectors. Appl. Phys. Lett. 2006, 88, 153107.

[36]

Wang, S. L.; Sun, H. L.; Wang, Z.; Zeng, X. H.; Ungar, G.; Guo, D. Y.; Shen, J. Q.; Li, P. G.; Liu, A. P.; Li, C. R. et al. In situ synthesis of monoclinic β-Ga2O3 nanowires on flexible substrate and solar-blind photodetector. J. Alloys Compd. 2019, 787, 133–139.

[37]

Li, L.; Auer, E.; Liao, M. Y.; Fang, X. S.; Zhai, T. Y.; Gautam, U. K.; Lugstein, A.; Koide, Y.; Bando, Y.; Golberg, D. Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts. Nanoscale 2011, 3, 1120–1126.

[38]

Moloney, J.; Tesh, O.; Singh, M.; Roberts, J. W.; Jarman, J. C.; Lee, L. C.; Huq, T. N.; Brister, J.; Karboyan, S.; Kuball, M. et al. Atomic layer deposited α-Ga2O3 solar-blind photodetectors. J. Phys. D: Appl. Phys. 2019, 52, 475101.

[39]

Liu, X. Z.; Guo, P.; Sheng, T.; Qian, L. X.; Zhang, W. L.; Li, Y. R. β-Ga2O3 thin films on sapphire pre-seeded by homo-self-templated buffer layer for solar-blind UV photodetector. Opt. Mater. 2016, 51, 203–207.

[40]

Qian, L. X.; Wu, Z. H.; Zhang, Y. Y.; Lai, P. T.; Liu, X. Z.; Li, Y. R. Ultrahigh-responsivity, rapid-recovery, solar-blind photodetector based on highly nonstoichiometric amorphous gallium oxide. ACS Photonics 2017, 4, 2203–2211.

[41]

Tak, B. R.; Gupta, V.; Kapoor, A. K.; Chu, Y. H.; Singh, R. Wearable gallium oxide solar-blind photodetectors on muscovite mica having ultrahigh photoresponsivity and detectivity with added high-temperature functionalities. ACS Appl. Electron. Mater. 2019, 1, 2463–2470.

Nano Research
Pages 5548-5554
Cite this article:
Zou X, Xie D, Sun Y, et al. Nanowires mediated growth of β-Ga2O3 nanobelts for high-temperature (> 573 K) solar-blind photodetectors. Nano Research, 2023, 16(4): 5548-5554. https://doi.org/10.1007/s12274-022-5243-0
Topics:

6363

Views

11

Crossref

13

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 19 August 2022
Revised: 26 October 2022
Accepted: 26 October 2022
Published: 05 December 2022
© Tsinghua University Press 2022
Return