AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Lithium deposition behavior in hard carbon hosts: Optical microscopy and scanning electron microscopy study

Ge Zhou1,2,3,§Yulin Zhao1,§Chuan Hu1,2,§Zhenzhen Ren1Hong Li2,3Liping Wang1( )
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
Tianmu Lake Institute of Advanced Energy Storage Technologies, Changzhou 213300, China
Key Laboratory for Renewable Energy, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

§ Ge Zhou, Yulin Zhao, and Chuan Hu contributed equally to this work.

Show Author Information

Graphical Abstract

The effects of lithiophilic sites and electrolytes on lithium (Li) deposition behavior in hard carbon (HC) electrode were systematically studied by optical microscopy and scanning electron microscopy. Li will not spontaneously deposit into the carbon pores, which is significantly dependent on the carbon surface, current density, areal capacity, and electrolyte.

Abstract

Lithium (Li) metal is an ideal anode for the next generation high-energy-density batteries. However, it suffers from dendrite growth, side reactions, and infinite relative volume change. Effective strategies are using porous carbons or surface modification carbons to guide Li deposition into their pores. While the Li deposition behavior is still ambiguous. Here, we systematically determine their deposition behavior in various surface-modified carbons and in different electrolytes via optical microscopy and scanning electron microscopy study. It is found that Li will not spontaneously deposit into the carbon pores, which is significantly dependent on the carbon surface, current density, areal capacity, and electrolyte. Thus, a “lithiophilic” modified commercial hard carbon with Ag is developed as a stable “host” and efficient surface protection derived from the localized high-concentration electrolyte exhibits a pretty low volume change (5.3%) during cycling at a current density of 2 mA·cm−2 and an areal capacity of 2 mAh·cm−2. This strategy addresses the volume change and dendrite problems by rationally designed host and electrolyte, providing a broad perspective for realizing Li-metal anode.

Electronic Supplementary Material

Download File(s)
5256_ESM.pdf (2.5 MB)

References

[1]

Huang, C. J.; Thirumalraj, B.; Tao, H. C.; Shitaw, K. N.; Sutiono, H.; Hagos, T. T.; Beyene, T. T.; Kuo, L. M.; Wang, C. C.; Wu, S. H. et al. Decoupling the origins of irreversible Coulombic efficiency in anode-free lithium metal batteries. Nat. Commun. 2021, 12, 1452.

[2]

Yan, K.; Lu, Z. D.; Lee, H. W.; Xiong, F.; Hsu, P. C.; Li, Y. Z.; Zhao, J.; Chu, S.; Cui, Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 2016, 1, 16010.

[3]

Qian, J. F.; Adams, B. D.; Zheng, J. M.; Xu, W.; Henderson, W. A.; Wang, J.; Bowden, M. E.; Xu, S. C.; Hu, J. Z.; Zhang, J. G. Anode-free rechargeable lithium metal batteries. Adv. Funct. Mater. 2016, 26, 7094–7102.

[4]

Zou, J.; Yuan, K. G.; Zhao, J.; Wang, B. J.; Chen, S. Y.; Huang, J. Y.; Li, H.; Niu, X. B.; Wang, L. P. Delithiation-driven topotactic reaction endows superior cycling performances for high-energy-density FeSx (1 ≤ x ≤ 1.14) cathodes. Energy Storage Mater. 2021, 43, 579–584.

[5]

Zhao, Y. L.; Wang, L. P.; Zou, J.; Ran, Q. W.; Li, L.; Chen, P. Y.; Yu, H. L.; Gao, J.; Niu, X. B. Bottom–up lithium growth guided by Ag concentration gradient in 3D PVDF framework towards stable lithium metal anode. J. Energy Chem. 2022, 65, 666–673.

[6]

Qi, S. H.; Liu, J. D.; He, J.; Wang, H. P.; Wu, M. G.; Wu, D. X.; Huang, J. D.; Li, F.; Li, X.; Ren, Y. R. et al. Structurally tunable characteristics of ionic liquids for optimizing lithium plating/stripping via electrolyte engineering. J. Energy Chem. 2021, 63, 270–277.

[7]

Li, T.; Shi, P.; Zhang, R.; Liu, H.; Cheng, X. B.; Zhang, Q. Dendrite-free sandwiched ultrathin lithium metal anode with even lithium plating and stripping behavior. Nano Res. 2019, 12, 2224–2229.

[8]

Gao, L.; Luo, S. B.; Li, J. X.; Cheng, B. W.; Kang, W. M.; Deng, N. P. Core–shell structure nanofibers-ceramic nanowires based composite electrolytes with high Li transference number for high-performance all-solid-state lithium metal batteries. Energy Storage Mater. 2021, 43, 266–274.

[9]

Lu, Q. Q.; Jie, Y. L.; Meng, X. Q.; Omar, A.; Mikhailova, D.; Cao, R. G.; Jiao, S. H.; Lu, Y.; Xu, Y. L. Carbon materials for stable Li metal anodes: Challenges, solutions, and outlook. Carbon Energy 2021, 3, 957–975.

[10]

Yu, M. F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287, 637–640.

[11]

Ma, Y.; Gu, Y. T.; He, Y.; Wei, L.; Lian, Y. B.; Pan, W. Y.; Li, X. J.; Su, Y. H.; Peng, Y.; Deng, Z. et al. Fast-charging and dendrite-free lithium metal anode enabled by partial lithiation of graphene aerogel. Nano Res. 2022, 15, 9792–9799.

[12]

Zhang, A. Y.; Fang, X.; Shen, C. F.; Liu, Y. H.; Zhou, C. W. A carbon nanofiber network for stable lithium metal anodes with high Coulombic efficiency and long cycle life. Nano Res. 2016, 9, 3428–3436.

[13]

Ye, H.; Xin, S.; Yin, Y. X.; Li, J. Y.; Guo, Y. G.; Wan, L. J. Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons. J. Am. Chem. Soc. 2017, 139, 5916–5922.

[14]

Cao, X.; Jia, H.; Xu, W.; Zhang, J. G. Review—Localized high-concentration electrolytes for lithium batteries. J. Electrochem. Soc. 2021, 168, 010522.

[15]

Jin, S.; Ye, Y. D.; Niu, Y. J.; Xu, Y. S.; Jin, H. C.; Wang, J. X.; Sun, Z. W.; Cao, A. M.; Wu, X. J.; Luo, Y. et al. Solid-solution-based metal alloy phase for highly reversible lithium metal anode. J. Am. Chem. Soc. 2020, 142, 8818–8826.

[16]

Zhang, S. M.; Yang, G. J.; Liu, Z. P.; Weng, S. T.; Li, X. Y.; Wang, X. F.; Gao, Y. R.; Wang, Z. X.; Chen, L. Q. Phase diagram determined lithium plating/stripping behaviors on lithiophilic substrates. ACS Energy Lett. 2021, 6, 4118–4126.

[17]

Park, C. M.; Jung, H.; Sohn, H. J. Electrochemical behaviors and reaction mechanism of nanosilver with lithium. Electrochem. Solid-State Lett. 2009, 12, A171.

[18]

Zhang, Z. L.; Jin, Y.; Zhao, Y.; Xu, J.; Sun, B.; Liu, K.; Lu, H. F.; Lv, N. W.; Dang, Z. M.; Wu, H. Homogenous lithium plating/stripping regulation by a mass-producible Zn particles modified Li-metal composite anode. Nano Res. 2021, 14, 3999–4005.

[19]

Lu, S. T.; Wang, H. H.; Zhou, J.; Wu, X. H.; Qin, W. Atomic layer deposition of ZnO on carbon black as nanostructured anode materials for high-performance lithium-ion batteries. Nanoscale 2017, 9, 1184–1192.

[20]

Fang, Y. J.; Zhang, S. L.; Wu, Z. P.; Luan, D. Y.; Lou, X. W. A highly stable lithium metal anode enabled by Ag nanoparticle-embedded nitrogen-doped carbon macroporous fibers. Sci. Adv. 2021, 7, eabg3626.

[21]

Ren, X. D.; Zou, L. F.; Cao, X.; Engelhard, M. H.; Liu, W.; Burton, S. D.; Lee, H.; Niu, C. J.; Matthews, B. E.; Zhu, Z. H. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 2019, 3, 1662–1676.

[22]

Liu, Y.; Wu, X. Y.; Niu, C. J.; Xu, W.; Cao, X.; Zhang, J. G.; Jiang, X. Y.; Xiao, J. H.; Yang, J.; Whittingham, M. S. et al. Systematic evaluation of carbon hosts for high-energy rechargeable lithium-metal batteries. ACS Energy Lett. 2021, 6, 1550–1559.

[23]

Li, T.; Li, Y.; Sun, Y. L.; Qian, Z. F.; Wang, R. H. New insights on the good compatibility of ether-based localized high-concentration electrolyte with lithium metal. ACS Mater. Lett. 2021, 3, 838–844.

[24]

Xie, L. J.; Tang, C.; Bi, Z. H.; Song, M. X.; Fan, Y. F.; Yan, C.; Li, X. M.; Su, F. Y.; Zhang, Q.; Chen, C. M. Hard carbon anodes for next-generation Li-ion batteries: Review and perspective. Adv. Energy Mater. 2021, 11, 2101650.

[25]

Wei, C. L.; Fei, H. F.; An, Y. L.; Tao, Y.; Feng, J. K.; Qian, Y. T. Uniform Li deposition by regulating the initial nucleation barrier via a simple liquid–metal coating for a dendrite-free Li-metal anode. J. Mater. Chem. A 2019, 7, 18861–18870.

[26]

Liu, Y. Y.; Lin, D. C.; Liang, Z.; Zhao, J.; Yan, K.; Cui, Y. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 2016, 7, 10992.

[27]

Yang, C. P.; Yao, Y. G.; He, S. M.; Xie, H.; Hitz, E.; Hu, L. B. Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode. Adv. Mater. 2017, 29, 1702714.

[28]

Ji, X. L.; Liu, D. Y.; Prendiville, D. G.; Zhang, Y. C.; Liu, X. N.; Stucky, G. D. Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition. Nano Today 2012, 7, 10–20.

[29]

Adams, B. D.; Zheng, J. M.; Ren, X. D.; Xu, W.; Zhang, J. G. Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 2018, 8, 1702097.

[30]

Lin, D. C.; Zhao, J.; Sun, J.; Yao, H. B.; Liu, Y. Y.; Yan, K.; Cui, Y. Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix. Proc. Natl. Acad. Sci. USA 2017, 114, 4613–4618.

[31]

Qian, J. F.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G. High rate and stable cycling of lithium metal anode. Nat. Commun. 2015, 6, 6362.

[32]

Ren, X. D.; Chen, S. R.; Lee, H.; Mei, D. H.; Engelhard, M. H.; Burton, S. D.; Zhao, W. G.; Zheng, J. M.; Li, Q. Y.; Ding, M. S.et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 2018, 4, 1877–1892.

[33]

Li, N. W.; Shi, Y.; Yin, Y. X.; Zeng, X. X.; Li, J. Y.; Li, C. J.; Wan, L. J.; Wen, R.; Guo, Y. G. A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew. Chem., Int. Ed. 2018, 57, 1505–1509.

[34]

Hobold, G. M.; Lopez, J.; Guo, R.; Minafra, N.; Banerjee, A.; Shirley Meng, Y.; Shao-Horn, Y.; Gallant, B M. Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nat. Energy 2021, 6, 951–960.

[35]

Wan, C.; Hu, M. Y.; Borodin, O.; Qian, J. F.; Qin, Z. H.; Zhang, J. G.; Hu, J. Z. Natural abundance 17O, 6Li NMR and molecular modeling studies of the solvation structures of lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane liquid electrolytes. J. Power Sources 2016, 307, 231–243.

[36]

Wang, H. S.; Yu, Z. A.; Kong, X.; Huang, W.; Zhang, Z. W.; Mackanic, D. G.; Huang, X. Y.; Qin, J.; Bao, Z. N.; Cui, Y. Dual-solvent Li-ion solvation enables high-performance Li-metal batteries. Adv. Mater. 2021, 33, 2008619.

[37]

Chen, X. R.; Zhao, B. C.; Yan, C.; Zhang, Q. Review on Li deposition in working batteries: From nucleation to early growth. Adv. Mater. 2021, 33, 2004128.

[38]

Rosso, M.; Gobron, T.; Brissot, C.; Chazalviel, J. N.; Lascaud, S. Onset of dendritic growth in lithium/polymer cells. J. Power Sources 2001, 97–98, 804–806.

[39]

Cao, X.; Ren, X. D.; Zou, L. F.; Engelhard, M. H.; Huang, W.; Wang, H. S.; Matthews, B. E.; Lee, H.; Niu, C. J.; Arey, B. W. et al. Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 2019, 4, 796–805.

Nano Research
Pages 8368-8376
Cite this article:
Zhou G, Zhao Y, Hu C, et al. Lithium deposition behavior in hard carbon hosts: Optical microscopy and scanning electron microscopy study. Nano Research, 2023, 16(6): 8368-8376. https://doi.org/10.1007/s12274-022-5256-8
Topics:
Part of a topical collection:

6383

Views

2

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 30 September 2022
Revised: 26 October 2022
Accepted: 26 October 2022
Published: 07 December 2022
© Tsinghua University Press 2022
Return