Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
High-entropy oxides receive significant attention owing to their “four effects”. However, they still suffer from harsh construction conditions such as high temperature and high pressure and present a block-like structure. Herein, in this work, Ni-Mn-Cu-Co-Fe-Al high-entropy layered oxides (HELOs) with a layered nanosheet structure were constructed by a simple pathway of topological transformation under relatively low temperature (300 °C) with six-membered Ni-Mn-Cu-Co-Fe-Al layered double hydroxides (LDHs) precursors, which exhibited an outstanding activity and excellent selectivity for CO2 photoelectroreduction (obtaining the highest carbon monoxide yield of 909.55 μmol·g−1·h−1 under −0.8 V vs. reversible hydrogen electrode (RHE), which is almost twice that of pure electrocatalysis). In addition, the charging voltage of a photo-assisted Zn-CO2 battery with HELOs as electrode was reduced from 2.62 to 2.40 V; the discharging voltage of the battery was increased from 0.51 to 0.59 V with the assistance of illumination. The improvement of round-trip efficiency of the battery indicates that light played a positive role in both the charging and discharging processes. This study not only lays an important foundation for the development of high-entropy oxides but also expands their application in the field of photoelectrochemistry.
Xu, S. Z.; Carter, E. A. Theoretical insights into heterogeneous (photo)electrochemical CO2 reduction. Chem. Rev. 2019, 119, 6631–6669.
White, J. L.; Baruch, M. F.; Pander III, J. E.; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y. et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. Chem. Rev. 2015, 115, 12888–12935.
Xie, J. F.; Wang, Y. B. Recent development of CO2 electrochemistry from Li-CO2 batteries to Zn-CO2 batteries. Acc. Chem. Res. 2019, 52, 1721–1729.
Zhu, Z.; Shi, X. M.; Fan, G. L.; Li, F. J.; Chen, J. Photo-energy conversion and storage in an aprotic Li-O2 battery. Angew. Chem. 2019, 131, 19197–19202.
Zhu, D. D.; Zhao, Q. C.; Fan, G. L.; Zhao, S.; Wang, L. B.; Li, F. J.; Chen, J. Photoinduced oxygen reduction reaction boosts the output voltage of a zinc-air battery. Angew. Chem. 2019, 131, 12590–12594.
Liu, X. R.; Yuan, Y. F.; Liu, J.; Liu, B.; Chen, X.; Ding, J.; Han, X. P.; Deng, Y. D.; Zhong, C.; Hu, W. B. Utilizing solar energy to improve the oxygen evolution reaction kinetics in zinc-air battery. Nat. Commun. 2019, 10, 4767.
Guan, D. H.; Wang, X. X.; Li, M. L.; Li, F.; Zheng, L. J.; Huang, X. L.; Xu, J. J. Light/electricity energy conversion and storage for a hierarchical porous In2S3@CNT/SS cathode towards a flexible Li-CO2 battery. Angew. Chem., Int. Ed. 2020, 59, 19518–19524.
Li, Z.; Li, M. L.; Wang, X. X.; Guan, D. H.; Liu, W. Q.; Xu, J. J. In situ fabricated photo-electro-catalytic hybrid cathode for light-assisted lithium-CO2 batteries. Mater. Chem. A 2020, 8, 14799–14806.
Wang, X. Y.; Xie, J. F.; Ghausi, M. A.; Lv, J. Q.; Huang, Y. Y.; Wu, M. X.; Wang, Y. B.; Yao, J. N. Rechargeable Zn-CO2 electrochemical cells mimicking two-step photosynthesis. Adv. Mater. 2019, 31, 1807807.
Liu, X. Y.; Xiao, J. P.; Peng, H. J.; Hong, X.; Chan, K.; Nørskov, J. K. Understanding trends in electrochemical carbon dioxide reduction rates. Nat. Commun. 2017, 8, 15438.
Peterson, A. A.; Nørskov, J. K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 2012, 3, 251–258.
Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J. Electrochemical CO2 reduction: A classification problem. ChemPhysChem 2017, 18, 3266–3273.
Hussain, J.; Jónsson, H.; Skúlason, E. Calculations of product selectivity in electrochemical CO2 reduction. ACS Catal. 2018, 8, 5240–5249.
Pedersen, J. K.; Batchelor, T. A. A.; Bagger, A.; Rossmeisl, J. High-entropy alloys as catalysts for the CO2 and CO reduction reactions. ACS Catal. 2020, 10, 2169–2176.
Gao, Y.; Liu, Y. Z.; Yu, H. Y.; Zou, D. L. High-entropy oxides for catalysis: Status and perspectives. Appl. Catal. A:Gen. 2022, 631, 118478.
Rost, C. M.; Sachet, E.; Borman, T.; Moballegh, A.; Dickey, E. C.; Hou, D.; Jones, J. L.; Curtarolo, S.; Maria, J. P. Entropy-stabilized oxides. Nat. Commun. 2015, 6, 8485.
Yao, Y. G.; Dong, Q.; Brozena, A.; Luo, J.; Miao, J. W.; Chi, M. F.; Wang, C.; Kevrekidis, I. G.; Ren, Z. J.; Greeley, J. et al. High-entropy nanoparticles: Synthesis–structure–property relationships and data-driven discovery. Science 2022, 376, eabn3103.
Li, T. Y.; Dong, Q.; Huang, Z. N.; Wu, L. P.; Yao, Y. G.; Gao, J. L.; Wang, X. Z.; Zhang, H. C.; Wang, D. W.; Li, T. et al. Interface engineering between multi-elemental alloy nanoparticles and a carbon support toward stable catalysts. Adv. Mater. 2022, 34, 2106436.
Cui, M. J.; Yang, C. P.; Li, B. Y.; Dong, Q.; Wu, M. L.; Hwang, S.; Xie, H.; Wang, X. Z.; Wang, G. F.; Hu, L. B. High-entropy metal sulfide nanoparticles promise high-performance oxygen evolution reaction. Adv. Energy Mater. 2021, 11, 2002887.
Wang, X. Z.; Dong, Q.; Qiao, H. Y.; Huang, Z. N.; Saray, M. T.; Zhong, G.; Lin, Z. W.; Cui, M. J.; Brozena, A.; Hong, M. et al. Continuous synthesis of hollow high-entropy nanoparticles for energy and catalysis applications. Adv. Mater. 2020, 32, 2002853.
Li, T. Y.; Yao, Y. G.; Ko, B. H.; Huang, Z. N.; Dong, Q.; Gao, J. L.; Chen, W.; Li, J. G.; Li, S. K.; Wang, X. Z. et al. Carbon-supported high-entropy oxide nanoparticles as stable electrocatalysts for oxygen reduction reactions. Adv. Funct. Mater. 2021, 31, 2010561.
Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F. J.; Nie, A. M.; Pu, T. C.; Rehwoldt, M. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489–1494.
Qiao, H. Y.; Saray, M. T.; Wang, X. Z.; Xu, S. M.; Chen, G.; Huang, Z. N.; Chen, C. J.; Zhong, G.; Dong, Q.; Hong, M. et al. Scalable synthesis of high entropy alloy nanoparticles by microwave heating. ACS Nano 2021, 15, 14928–14937.
Cui, M. J.; Yang, C. P.; Hwang, S.; Yang, M. H.; Overa, S.; Dong, Q.; Yao, Y. G.; Brozena, A. H.; Cullen, D. A.; Chi, M. F. et al. Multi-principal elemental intermetallic nanoparticles synthesized via a disorder-to-order transition. Sci. Adv. 2022, 8, eabm4322.
Yao, Y. G.; Huang, Z. N.; Hughes, L. A.; Gao, J. L.; Li, T. Y.; Morris, D.; Zeltmann, S. E.; Savitzky, B. H.; Ophus, C.; Finfrock, Y. Z. et al. Extreme mixing in nanoscale transition metal alloys. Matter 2021, 4, 2340–2353.
Miracle, D. B.; Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511.
George, E. P.; Raabe, D.; Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534.
Liu, L. Y.; Zhang, Y.; Han, J. H.; Wang, X. Y.; Jiang, W. Q.; Liu, C. T.; Zhang, Z. W.; Liaw, P. K. Nanoprecipitate-strengthened high-entropy alloys. Adv. Sci. 2021, 8, 2100870.
Dong, Q.; Hong, M.; Gao, J. L.; Li, T. Y.; Cui, M. J.; Li, S. K.; Qiao, H. Y.; Brozena, A. H.; Yao, Y. G.; Wang, X. Z. et al. Rapid synthesis of high-entropy oxide microparticles. Small 2022, 18, 2104761.
Zhao, C. L.; Ding, F. X.; Lu, Y. X.; Chen, L. Q.; Hu, Y. S. High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 264–269.
McCormick, C. R.; Schaak, R. E. Simultaneous multication exchange pathway to high-entropy metal sulfide nanoparticles. J. Am. Chem. Soc. 2021, 143, 1017–1023.
Cavin, J.; Ahmadiparidari, A.; Majidi, L.; Thind, A. S.; Misal, S. N.; Prajapati, A.; Hemmat, Z.; Rastegar, S.; Beukelman, A.; Singh, M. R. et al. 2D high-entropy transition metal dichalcogenides for carbon dioxide electrocatalysis. Adv. Mater. 2021, 33, 2100347.
Zhao, X. H.; Xue, Z. M.; Chen, W. J.; Wang, Y. Q.; Mu, T. C. Eutectic synthesis of high-entropy metal phosphides for electrocatalytic water splitting. ChemSusChem 2020, 13, 2038–2042.
Lai, D. W.; Kang, Q. L.; Gao, F.; Lu, Q. Y. High-entropy effect of a metal phosphide on enhanced overall water splitting performance. J. Mater. Chem. A 2021, 9, 17913–17922.
Zhang, L. J.; Cai, W. W.; Bao, N. Z.; Yang, H. Implanting an electron donor to enlarge the d–p hybridization of high-entropy (oxy)hydroxide: A novel design to boost oxygen evolution. Adv. Mater. 2022, 34, 2110511.
Nellaiappan, S.; Katiyar, N. K.; Kumar, R.; Parui, A.; Malviya, K. D.; Pradeep, K. G.; Singh, A. K.; Sharma, S.; Tiwary, C. S.; Biswas, K. High-entropy alloys as catalysts for the CO2 and CO reduction reactions: Experimental realization. ACS Catal. 2020, 10, 3658–3663.
Akrami, S.; Murakami, Y.; Watanabe, M.; Ishihara, T.; Arita, M.; Fuji, M.; Edalati, K. Defective high-entropy oxide photocatalyst with high activity for CO2 conversion. Appl. Catal. B:Environ. 2022, 303, 120896.
Gu, K. Z.; Wang, D. D.; Xie, C.; Wang, T. H.; Huang, G.; Liu, Y. B.; Zou, Y. Q.; Tao, L.; Wang, S. Y. Defect-rich high-entropy oxide nanosheets for efficient 5-hydroxymethylfurfural electrooxidation. Angew. Chem., Int. Ed. 2021, 60, 20253–20258.
He, S.; Somayaji, V.; Wang, M. D.; Lee, S. H.; Geng, Z. J.; Zhu, S. Y.; Novello, P.; Varanasi, C. V.; Liu, J. High entropy spinel oxide for efficient electrochemical oxidation of ammonia. Nano Res. 2022, 15, 4785–4791.
Guo, H. X.; Wang, W. M.; He, C. Y.; Liu, B. H.; Yu, D. M.; Liu, G.; Gao, X. H. Entropy-assisted high-entropy oxide with a spinel structure toward high-temperature infrared radiation materials. ACS Appl. Mater. Interfaces 2022, 14, 1950–1960.
Oses, C.; Toher, C.; Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 2020, 5, 295–309.
Wright, A. J.; Wang, Q. Y.; Huang, C. Y.; Nieto, A.; Chen, R. K.; Luo, J. From high-entropy ceramics to compositionally-complex ceramics: A case study of fluorite oxides. J. Eur. Ceram. Soc. 2020, 40, 2120–2129.