Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
It is fascinating to explore the distribution of CO2 hydrogenation products regulated by heterogeneous catalysts, as both the chemical state of surface metals and structure of the support itself of the supported catalysts may affect the performance of CO2 hydrogenation. Herein, the complete switching of CO2 hydrogenation products from CH4 to CO can be realized by induction of Cl into Ru/TiO2 catalyst. Density functional theory (DFT) calculations indicated that Cl ions were mainly located on the Ru metal sites of Ru/TiO2 catalysts. Bader charge analysis and Ru 3p X-ray photoelectron spectra (XPS) results suggested that electrons transferred from Ru to Cl, resulting in the decrease of electron density of Ru. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) of CO2 hydrogenation and CO adsorption proved that with the increase of the Cl ion content, the adsorption of CO on the catalyst surface was significantly weakened, and resulted in the high CO selectivity. Our work demonstrates the role of Cl ions in regulating the distribution of CO2 hydrogenation products, and provides new ideas for regulating other catalytic processes.
Yang, S. Y.; Zhang, L.; Wang, Z. J. Advances in the preparation of light alkene from carbon dioxide by hydrogenation. Fuel 2022, 324, 124503.
Gutterød, E. S.; Lazzarini, A.; Fjermestad, T.; Kaur, G.; Manzoli, M.; Bordiga, S.; Svelle, S.; Lillerud, K. P.; Skúlason, E.; ØIen-Ødegaard, S. et al. Hydrogenation of CO2 to methanol by Pt nanoparticles encapsulated in UiO-67: Deciphering the role of the metal-organic framework. J. Am. Chem. Soc. 2020, 142, 999–1009.
Li, N.; Wang, W. W.; Song, L. X.; Wang, H.; Fu, Q.; Qu, Z. P. CO2 hydrogenation to methanol promoted by Cu and metastable tetragonal CexZryOz interface. J. Energy Chem. 2022, 68, 771–779.
Ye, X.; Ma, J. G.; Yu, W. G.; Pan, X. L.; Yang, C. Y.; Wang, C.; Liu, Q. G.; Huang, Y. Q. Construction of bifunctional single-atom catalysts on the optimized β-Mo2C surface for highly selective hydrogenation of CO2 into ethanol. J. Energy Chem. 2022, 67, 184–192.
Lv, C. F.; Xu, L. L.; Chen, M. D.; Cui, Y.; Wen, X. Y.; Li, Y. P.; Wu, C. E.; Yang, B.; Miao, Z. C.; Hu, X. et al. Recent progresses in constructing the highly efficient Ni based catalysts with advanced low-temperature activity toward CO2 methanation. Front. Chem. 2020, 8, 269.
Gao, H. X.; Liu, K.; Luo, T.; Chen, Y.; Hu, J. H.; Fu, J. W.; Liu, M. CO2 reduction reaction pathways on single-atom Co sites: Impacts of local coordination environment. Chin. J. Catal. 2022, 43, 832–838.
Xu, S. S.; Chansai, S.; Shao, Y.; Xu, S. J.; Wang, Y. C.; Haigh, S.; Mu, Y. B.; Jiao, Y. L.; Stere, C. E.; Chen, H. H. et al. Mechanistic study of non-thermal plasma assisted CO2 hydrogenation over Ru supported on MgAl layered double hydroxide. Appl. Catal. B Environ. 2020, 268, 118752.
Li, L. T.; Yang, B.; Gao, B.; Wang, Y. F.; Zhang, L. X.; Ishihara, T.; Qi, W.; Guo, L. M. CO2 hydrogenation selectivity shift over In-Co binary oxides catalysts: Catalytic mechanism and structure–property relationship. Chin. J. Catal. 2022, 43, 862–876.
Xiong, Y.; Liu, X.; Hu, Y.; Gu, D.; Jiang, M. H.; Tie, Z.; Jin, Z. Ag24Au cluster decorated mesoporous Co3O4 for highly selective and efficient photothermal CO2 hydrogenation. Nano Res. 2022, 15, 4965–4972.
Gao, P.; Zhang, L. N.; Li, S. G.; Zhou, Z. X.; Sun, Y. H. Novel heterogeneous catalysts for CO2 hydrogenation to liquid fuels. ACS Cent. Sci. 2020, 6, 1657–1670.
Shen, C. Y.; Bao, Q. Q.; Xue, W. J.; Sun, K. H.; Zhang, Z. T.; Jia, X. Y.; Mei, D. H.; Liu, C. J. Synergistic effect of the metal–support interaction and interfacial oxygen vacancy for CO2 hydrogenation to methanol over Ni/In2O3 catalyst: A theoretical study. J. Energy Chem. 2022, 65, 623–629.
Zheng, X. S.; Lin, Y.; Pan, H. B.; Wu, L. H.; Zhang, W.; Cao, L. L.; Zhang, J.; Zheng, L. R.; Yao, T. Grain boundaries modulating active sites in RhCo porous nanospheres for efficient CO2 hydrogenation. Nano Res. 2018, 11, 2357–2365.
Wang, K.; He, S. H.; Lin, Y. Z.; Chen, X.; Dai, W. X.; Fu, X. Z. Photo-enhanced thermal catalytic CO2 methanation activity and stability over oxygen-deficient Ru/TiO2 with exposed TiO2 {001} facets: Adjusting photogenerated electron behaviors by metal–support interactions. Chin. J. Catal. 2022, 43, 391–402.
Shen, H. D.; Dong, Y. J.; Yang, S. W.; He, Y.; Wang, Q. M.; Cao, Y. L.; Wang, W. B.; Wang, T. S.; Zhang, Q. Y.; Zhang, H. P. Identifying the roles of Ce3+–OH and Ce–H in the reverse water-gas shift reaction over highly active Ni-doped CeO2 catalyst. Nano Res. 2022, 15, 5831–5841.
Jiang, X.; Nie, X. W.; Guo, X. W.; Song, C. S.; Chen, J. G. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem. Rev. 2020, 120, 7984–8034.
Álvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A. V.; Wezendonk, T. A.; Makkee, M.; Gascon, J.; Kapteijn, F. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem. Rev. 2017, 117, 9804–9838.
Jiang, J. C.; Chen, J. C.; Zhao, M. D.; Yu, Q.; Wang, Y. G.; Li, J. Rational design of copper-based single-atom alloy catalysts for electrochemical CO2 reduction. Nano Res. 2022, 15, 7116–7123.
Ren, J.; Mebrahtu, C.; Van Koppen, L.; Martinovic, F.; Hofmann, J. P.; Hensen, E. J. M.; Palkovits, R. Enhanced CO2 methanation activity over La2−xCexNiO4 perovskite-derived catalysts: Understanding the structure–performance relationships. Chem. Eng. J. 2021, 426, 131760.
Frei, M. S.; Mondelli, C.; García-Muelas, R.; Morales-Vidal, J.; Philipp, M.; Safonova, O. V.; López, N.; Stewart, J. A.; Ferré, D. C.; Pérez-Ramírez, J. Nanostructure of nickel-promoted indium oxide catalysts drives selectivity in CO2 hydrogenation. Nat. Commun. 2021, 12, 1960.
Karelovic, A.; Ruiz, P. CO2 hydrogenation at low temperature over Rh/γ-Al2O3 catalysts:Effect of the metal particle size on catalytic performances and reaction mechanism. Appl. Catal. B Environ. 2012, 113, 237–249.
Kwak, J. H.; Kovarik, L.; Szanyi, J. CO2 reduction on supported Ru/Al2O3 catalysts: Cluster size dependence of product selectivity. ACS Catal. 2013, 3, 2449–2455.
Aitbekova, A.; Wu, L. H.; Wrasman, C. J.; Boubnov, A.; Hoffman, A. S.; Goodman, E. D.; Bare, S. R.; Cargnello, M. Low-temperature restructuring of CeO2-supported Ru nanoparticles determines selectivity in CO2 catalytic reduction. J. Am. Chem. Soc. 2018, 140, 13736–13745.
Kattel, S.; Yu, W. T.; Yang, X. F.; Yan, B. H.; Huang, Y. Q.; Wan, W. M.; Liu, P.; Chen, J. G. CO2 Hydrogenation over oxide-supported PtCo catalysts:The role of the oxide support in determining the product selectivity. Angew. Chem., Int. Ed. 2016, 55, 7968–7973.
Kwak, J. H.; Kovarik, L.; Szanyi, J. Heterogeneous catalysis on atomically dispersed supported metals: CO2 reduction on multifunctional Pd catalysts. ACS Catal. 2013, 3, 2094–2100.
Li, W. H.; Zhang, G. H.; Jiang, X.; Liu, Y.; Zhu, J.; Ding, F. S.; Liu, Z. M.; Guo, X. W.; Song, C. S. CO2 hydrogenation on unpromoted and M-promoted Co/TiO2 catalysts (M = Zr, K, Cs): Effects of crystal phase of supports and metal–support interaction on tuning product distribution. ACS Catal. 2019, 9, 2739–2751.
Gao, M. T.; Zhang, J.; Zhu, P. Q.; Liu, X. C.; Zheng, Z. F. Unveiling the origin of alkali metal promotion in CO2 methanation over Ru/ZrO2. Appl. Catal. B Environ. 2022, 314, 121476.
Matsubu, J. C.; Yang, V. N.; Christopher, P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J. Am. Chem. Soc. 2015, 137, 3076–3084.
Zhang, Y. R.; Zhang, Z.; Yang, X. F.; Wang, R. F.; Duan, H. M.; Shen, Z.; Li, L.; Su, Y.; Yang, R. Z.; Zhang, Y. P. et al. Tuning selectivity of CO2 hydrogenation by modulating the strong metal–support interaction over Ir/TiO2 catalysts. Green Chem. 2020, 22, 6855–6861.
Hui, L.; Zhang, X. T.; Xue, Y. R.; Chen, X.; Fang, Y.; Xing, C. Y.; Liu, Y. X.; Zheng, X. C.; Du, Y. C.; Zhang, C. et al. Highly dispersed platinum chlorine atoms anchored on gold quantum dots for a highly efficient electrocatalyst. J. Am. Chem. Soc. 2022, 144, 1921–1928.
Zhao, Y. N.; Jia, L. J.; Medrano, J. A.; Ross, J. R. H.; Lefferts, L. Supported Pd catalysts prepared via colloidal method: The effect of acids. ACS Catal. 2013, 3, 2341–2352.
Ghosh, I. K.; Iqbal, Z.; Van Heerden, T.; Van Steen, E.; Bordoloi, A. Insights into the unusual role of chlorine in product selectivity for direct hydrogenation of CO/CO2 to short-chain olefins. Chem. Eng. J. 2021, 413, 127424.
González-Carballo, J. M.; Pérez-Alonso, F. J.; García-García, F. J.; Ojeda, M.; Fierro, J. L. G.; Rojas, S. In-situ study of the promotional effect of chlorine on the Fischer–Tropsch synthesis with Ru/Al2O3. J. Catal. 2015, 332, 177–186.
Shimoda, N.; Shoji, D.; Tani, K.; Fujiwara, M.; Urasaki, K.; Kikuchi, R.; Satokawa, S. Role of trace chlorine in Ni/TiO2 catalyst for CO selective methanation in reformate gas. Appl. Catal. B Environ. 2015, 174–175, 486–495.
Djinović, P.; Galletti, C.; Specchia, S.; Specchia, V. Ru-based catalysts for CO selective methanation reaction in H2-rich gases. Catal. Today 2011, 164, 282–287.
Wen, X. Y.; Xu, L. L.; Chen, M. D.; Shi, Y. Y.; Lv, C. F.; Cui, Y.; Wu, X. Y.; Cheng, G.; Wu, C. E.; Miao, Z. C. et al. Exploring the influence of nickel precursors on constructing efficient Ni-based CO2 methanation catalysts assisted with in-situ technologies. Appl. Catal. B Environ. 2021, 297, 120486.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phy. Rev. B 1996, 54, 11169.
Howard-Fabretto, L.; Gorey, T. J.; Li, G. J.; Tesana, S.; Metha, G. F.; Anderson, S. L.; Andersson, G. G. The interaction of size-selected Ru3 clusters with RF-deposited TiO2: Probing Ru–CO binding sites with CO-temperature programmed desorption. Nanoscale Adv. 2021, 3, 3537–3553.
Senthilnathan, J.; Philip, L. Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2. Chem. Eng. J. 2010, 161, 83–92.
Ftouni, J.; Muñoz-Murillo, A.; Goryachev, A.; Hofmann, J. P.; Hensen, E. J. M.; Lu, L.; Kiely, C. J.; Bruijnincx, P. C. A.; Weckhuysen, B. M. ZrO2 is preferred over TiO2 as support for the Ru-catalyzed hydrogenation of levulinic acid to γ-valerolactone. ACS Catal. 2016, 6, 5462–5472.
Yang, Y.; Fu, Q.; Wei, M. M.; Bluhm, H.; Bao, X. H. Stability of BN/metal interfaces in gaseous atmosphere. Nano Res. 2015, 8, 227–237.
Zhang, J.; Pei, L. J.; Wang, J.; Zhu, P. Q.; Gu, X. M.; Zheng, Z. F. Differences in the selective reduction mechanism of 4-nitroacetophenone catalysed by rutile- and anatase-supported ruthenium catalysts. Catal. Sci. Technol. 2020, 10, 1518–1528.
Shi, Z. Y.; Wang, J.; Wang, W. X.; Zhang, Y. X.; Li, B.; Lu, Z. G.; Li, Y. D. Remarkable anodic performance of lead titanate 1D nanostructures via in-situ irreversible formation of abundant Ti3+ as conduction pathways. Nano Res. 2016, 9, 353–362.
Sun, C. Z.; Liu, H.; Chen, W.; Chen, D. Z.; Yu, S. H.; Liu, A. N.; Dong, L.; Feng, S. Insights into the Sm/Zr co-doping effects on N2 selectivity and SO2 resistance of a MnOx-TiO2 catalyst for the NH3-SCR reaction. Chem. Eng. J. 2018, 347, 27–40.
Nam, H.; Kim, J. H.; Kim, H.; Kim, M. J.; Jeon, S. G.; Jin, G. T.; Won, Y.; Hwang, B. W.; Lee, S. Y.; Baek, J. I. et al. CO2 methanation in a bench-scale bubbling fluidized bed reactor using Ni-based catalyst and its exothermic heat transfer analysis. Energy 2021, 214, 118895.
Šmit, G.; Strukan, N.; Crajé, M. W. J.; Lázár, K. A comparative study of CO adsorption and oxidation on Au/Fe2O3 catalysts by FT-IR and in situ DRIFTS spectroscopies. J. Mol. Catal. A Chem. 2006, 252, 163–170.
Panagiotopoulou, P. Hydrogenation of CO2 over supported noble metal catalysts. Appl. Catal. A:Gen. 2017, 542, 63–70.
Wang, Y. B.; Zhao, J.; Li, Y. X.; Wang, C. Y. Selective photocatalytic CO2 reduction to CH4 over Pt/In2O3: Significant role of hydrogen adatom. Appl. Catal. B Environ. 2018, 226, 544–553.
Asokan, C.; Thang, H. V.; Pacchioni, G.; Christopher, P. Reductant composition influences the coordination of atomically dispersed Rh on anatase TiO2. Catal. Sci. Technol. 2020, 10, 1597–1601.
Thang, H. V.; Tosoni, S.; Fang, L.; Bruijnincx, P.; Pacchioni G. Nature of sintering-resistant, single-atom Ru species dispersed on zirconia-based catalysts: A DFT and FTIR study of CO adsorption. ChemCatChem 2018, 10, 2634–2645.
Wang, J. J.; Li, G. N.; Li, Z. L.; Tang, C. Z.; Feng, Z. C.; An, H. Y.; Liu, H. L.; Liu, T. F.; Li, C. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol. Sci. Adv. 2017, 3, e1701290.
Abdel-Mageed, A. M.; Wiese, K.; Parlinska-Wojtan, M.; Rabeah, J.; Brückner, A.; Behm, R. J. Encapsulation of Ru nanoparticles: Modifying the reactivity toward CO and CO2 methanation on highly active Ru/TiO2 catalysts. Appl. Catal. B:Environ. 2020, 270, 118846.
Loveless, B. T.; Buda, C.; Neurock, M.; Iglesia, E. CO chemisorption and dissociation at high coverages during CO hydrogenation on Ru catalysts. J. Am. Chem. Soc. 2013, 135, 6107–6121.
Chen, S. L.; Abdel-Mageed, A. M.; Li, M. R.; Cisneros, S.; Bansmann, J.; Rabeah, J.; Brückner, A.; Groß, A.; Behm, R. J. Electronic metal–support interactions and their promotional effect on CO2 methanation on Ru/ZrO2 catalysts. J. Catal. 2021, 400, 407–420.
Yu, X. H.; Dai, L. Y.; Deng, J. G.; Liu, Y. X.; Jing, L.; Zhang, X.; Gao, R. Y.; Hou, Z. Q.; Wei, L.; Dai, H. X. An isotopic strategy to investigate the role of water vapor in the oxidation of 1,2-dichloroethane over the Ru/WO3 or Ru/TiO2 catalyst. Appl. Catal. B Environ. 2022, 305, 121037.