AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Surface cleaned CuxPdy alloy: Synthesis and their superior performances in hydrogen evolution reaction and biosensor

Xinmei Liu1,2( )Xue Li1Wenlong Yang1( )Gang Liu1( )Yu Wang1Yuhang Zuo1
Harbin University of Science and Technology, Harbin 150001, China
Jiangsu Zhongsheng Gaoke Environment Co., Ltd., Wuxi 214244, China
Show Author Information

Graphical Abstract

The synthesis of with controllable atomic ratio and “clean surface” and their superior performances in hydrogen evolution reaction and detection of glucose.

Abstract

High cost and restricted activity of electrocatalysis are the major challenges for hydrogen generation and biosensors. In this work, we provided a one-pot synthesis of CuxPdy alloy nanoparticles (NPs) with controllable atomic ratio and “clean surface”. Benefiting from the preferable d-band structure, the Cu62Pd38 NPs exhibited a lower overpotentials in the hydrogen evolution reaction (HER) over the full pH range. In the acidic media, Cu62Pd38 NPs achieved a low overpotential of 28.12 mV for HER, which was 25.73% of Pd NPs. In the neutral solution, the overpotential by Cu62Pd38 NPs is only 41.71% for that by uncleaned CuPd NPs. In alkaline media, the overpotential by Cu62Pd38 NPs was declined from 38.01 to 20.20 mV after 720 min yielding hydrogen, which was only 53.14% for the initial overpotential. As applied in biosensor, the synergistic effect of Cu and Pd accelerated the kinetics of electrocatalytic process, resulting in an enhanced performance. The glucose sensor constructed by Cu67Pd33 exhibited a wider detection range up to 100.0 mM. And the sensitivity is 379.4 µA/(mM·cm2), which is ca. 4.63 and 14.09 folds for that by pure Cu NPs and Pd NPs, respectively. An optimal atomic percent would be conducive to optimize electrocatalytic activity of CuxPdy alloy. The volcano plots for CuxPdy would open up a new avenue for designing electrocatalysis with rationalized cost and optimized performance.

Electronic Supplementary Material

Download File(s)
12274_2022_5269_MOESM1_ESM.pdf (1.1 MB)

References

[1]

Zhou, M.; Li, C.; Fang, J. Y. Noble-metal based random alloy and intermetallic nanocrystals: Syntheses and applications. Chem. Rev. 2021, 121, 736–795.

[2]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[3]

Han, C.; Li, W. J.; Wang, J. Z.; Huang, Z. G. Boron leaching: Creating vacancy-rich Ni for enhanced hydrogen evolution. Nano Res. 2022, 15, 1868–1873.

[4]

Jiang, R.; Li, Q.; Zheng, X.; Wang, W. Z.; Wang, S. B.; Xu, Z. M.; Wu, J. B. Metal-organic framework-derived Co nanoparticles and single atoms as efficient electrocatalyst for pH universal hydrogen evolution reaction. Nano Res. 2022, 15, 7917–7924.

[5]

Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657.

[6]

Nie, X. W.; Jiang, X.; Wang, H. Z.; Luo, W. J.; Janik, M. J.; Chen, Y. G.; Guo, X. W.; Song, C. S. Mechanistic understanding of alloy effect and water promotion for Pd-Cu bimetallic catalysts in CO2 hydrogenation to methanol. ACS Catal. 2018, 8, 4873–4892.

[7]

Hao, S.; Zhang, H.; Sun, X. X.; Zhai, J. F.; Dong, S. J. A mediator-free self-powered glucose biosensor based on a hybrid glucose/MnO2 enzymatic biofuel cell. Nano Res. 2021, 14, 707–714.

[8]

Shi, Y. F.; Lyu, Z. H.; Zhao, M.; Chen, R. H.; Nguyen, Q. N.; Xia, Y. N. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 2021, 121, 649–735.

[9]

Yan, B.; Xu, H.; Zhang, K.; Li, S. J.; Wang, J.; Shi, Y. T.; Du, Y. K. Cu assisted synthesis of self-supported PdCu alloy nanowires with enhanced performances toward ethylene glycol electrooxidation. Appl. Surf. Sci. 2018, 434, 701–710.

[10]

Wang, Z. Y.; Xu, L.; Huang, F. Z.; Qu, L. B.; Li, J. T.; Owusu, K. A.; Liu, Z. A.; Lin, Z. F.; Xiang, B. H.; Liu, X. et al. Copper-nickel nitride nanosheets as efficient bifunctional catalysts for hydrazine-assisted electrolytic hydrogen production. Adv. Energy Mater. 2019, 9, 1900390.

[11]

Wang, X. Q.; Li, Z. J.; Qu, Y. T.; Yuan, T. W.; Wang, W. Y.; Wu, Y. E.; Li, Y. D. Review of metal catalysts for oxygen reduction reaction: From nanoscale engineering to atomic design. Chem 2019, 5, 1486–1511.

[12]

Wu, Z. P.; Lu, X. F.; Zang, S. Q.; Lou, X. W. Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction. Adv. Funct. Mater. 2020, 30, 1910274.

[13]

Yan, Y. B.; Zhao, Z. P.; Zhao, J.; Xu, Y. H.; Xu, Y. F.; Zhao, Y. H.; Tang, W. F.; Lee, J. M. Ultrathin CuNi nanosheets for CO2 reduction and O2 reduction reaction in fuel cells. ACS Mater. Lett. 2021, 3, 1143–1150.

[14]

Liu, X. M.; Liang, C.; Yang, W. L.; Yang, C. Y.; Lin, J. Q.; Li, X. A monodispersed CuPt alloy: Synthesis and its superior catalytic performance in the hydrogen evolution reaction over a full pH range. RSC Adv. 2021, 11, 12470–12475.

[15]

Ball, M. R.; Rivera-Dones, K. R.; Gilcher, E. B.; Ausman, S. F.; Hullfish, C. W.; Lebrón, E. A.; Dumesic, J. A. AgPd and CuPd catalysts for selective hydrogenation of acetylene. ACS Catal. 2020, 10, 8567–8581.

[16]

Mohl, M.; Dobo, D.; Kukovecz, A.; Konya, Z.; Kordas, K.; Wei, J. Q.; Vajtai, R.; Ajayan, P. M. Formation of CuPd and CuPt bimetallic nanotubes by galvanic replacement reaction. J. Phys. Chem. C 2011, 115, 9403–9409.

[17]

Zhi, X.; Jiao, Y.; Zheng, Y.; Vasileff, A.; Qiao, S. Z. Selectivity roadmap for electrochemical CO2 reduction on copper-based alloy catalysts. Nano Energy 2020, 71, 104601.

[18]

Göksu, H.; Zengin, N.; Burhan, H.; Cellat, K.; Şen, F. A novel hydrogenation of nitroarene compounds with multi wall carbon nanotube supported palladium/copper nanoparticles (PdCu@MWCNT NPs) in aqueous medium. Sci. Rep. 2020, 10, 8043.

[19]

Liu, X. M.; Yang, C. Y.; Yang, W. L.; Lin, J. Q.; Liang, C.; Zhao, X. One-pot synthesis of uniform Cu nanowires and their enhanced non-enzymatic glucose sensor performance. J. Mater. Sci. 2021, 56, 5520–5531.

[20]

Yang, C. Y.; Liu, X. M.; Yang, W. L.; Lin, J. Q.; Li, X.; Wu, J. Cu NWs@Pd with controllable diameter: Synthesis and their enhanced sensor performances in the detection of glucose and H2O2. J. Nanopart. Res. 2022, 24, 73.

[21]

Naikoo, G. A.; Salim, H.; Hassan, I. U.; Awan, T.; Arshad, F.; Pedram, M. Z.; Ahmed, W.; Qurashi, A. Recent advances in non-enzymatic glucose sensors based on metal and metal oxide nanostructures for diabetes management—A review. Front. Chem. 2021, 9, 748957.

[22]

Zhao, X. J.; Dai, L.; Qin, Q.; Pei, F.; Hu, C. Y.; Zheng, N. F. Self-supported 3D PdCu alloy nanosheets as a bifunctional catalyst for electrochemical reforming of ethanol. Small 2017, 13, 1602970.

[23]

Wu, W. P.; Periasamy, A. P.; Lin, G. L.; Shih, Z. Y.; Chang, H. T. Palladium copper nanosponges for electrocatalytic reduction of oxygen and glucose detection. J. Mater. Chem. A 2015, 3, 9675–9681.

[24]

Liu, X. M.; Sui, Y. M.; Yang, X. Y.; Wei, Y. J.; Zou, B. Cu nanowires with clean surfaces: Synthesis and enhanced electrocatalytic activity. ACS Appl. Mater. Interfaces 2016, 8, 26886–26894.

[25]

Liu, X. M.; Yang, C. Y.; Yang, W. L.; Lin, J. Q.; Zhou, X.; Li, Y. H. Cu nanoplates with “clean surface”: Synthesis and their enhanced biosensors performance. J. Ind. Eng. Chem. 2022, 108, 476–483.

[26]

Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913.

[27]

Li, C. Z.; Yuan, Q.; Ni, B.; He, T.; Zhang, S. M.; Long, Y.; Gu, L.; Wang, X. Dendritic defect-rich palladium-copper-cobalt nanoalloys as robust multifunctional non-platinum electrocatalysts for fuel cells. Nat. Commun. 2018, 9, 3702.

[28]

Amiripour, F.; Ghasemi, S.; Azizi, S. N. A novel non-enzymatic glucose sensor based on gold-nickel bimetallic nanoparticles doped aluminosilicate framework prepared from agro-waste material. Appl. Surf. Sci. 2021, 537, 147827.

[29]

He, J.; Yang, H.; Zhang, Y. Y.; Yu, J.; Miao, L. F.; Song, Y. H.; Wang, L. Smart nanocomposites of Cu-hemin metal-organic frameworks for electrochemical glucose biosensing. Sci. Rep. 2016, 6, 36637.

[30]

Yang, Z.; Xu, W.; Yan, B. D.; Wu, B. Q.; Ma, J. X.; Wang, X. H.; Qiao, B.; Tu, J. C.; Pei, H.; Chen, D. L. et al. Gold and platinum nanoparticle-functionalized TiO2 nanotubes for photoelectrochemical glucose sensing. ACS Omega 2022, 7, 2474–2483.

[31]

Waqas, M.; Lan, J. J.; Zhang, X. X.; Fan, Y. J.; Zhang, P. Y.; Liu, C. Z.; Jiang, Z.; Wang, X. Q.; Zeng, J. Q.; Chen, W. Fabrication of non-enzymatic electrochemical glucose sensor based on Pd-Mn alloy nanoparticles supported on reduced graphene oxide. Electroanalysis 2020, 32, 1226–1236.

[32]

Li, R. S.; Deng, X.; Xia, L. F. Non-enzymatic sensor for determination of glucose based on PtNi nanoparticles decorated graphene. Sci. Rep. 2020, 10, 16788.

[33]

Deng, J.; Li, Y. Y.; Deng, D. M.; He, H. B.; Yan, X. X.; Zhao, J. W.; Luo, L. Q. Cu-Pd alloy nanoparticles on carbon paper as a self-supporting electrode for glucose sensing. ACS Appl. Nano Mater. 2021, 4, 14077–14085.

[34]

Ahmed, J.; Rashed, A.; Faisal, M.; Harraz, F. A.; Jalalah, M.; Alsareii, S. A. Novel SWCNTs-mesoporous silicon nanocomposite as efficient non-enzymatic glucose biosensor. Appl. Surf. Sci. 2021, 552, 149477.

[35]

Li, X. J.; Ping, J. F.; Ying, Y. B. Recent developments in carbon nanomaterial-enabled electrochemical sensors for nitrite detection. TrAC Trends Analyt. Chem. 2019, 113, 1–12.

[36]

Mirvish, S. S. Role of N-nitroso compounds (NOC) and N-nitrosation in etiology of gastric, esophageal, nasopharyngeal and bladder cancer and contribution to cancer of known exposures to NOC. Cancer Lett. 1995, 93, 17–48.

Nano Research
Pages 7941-7949
Cite this article:
Liu X, Li X, Yang W, et al. Surface cleaned CuxPdy alloy: Synthesis and their superior performances in hydrogen evolution reaction and biosensor. Nano Research, 2023, 16(5): 7941-7949. https://doi.org/10.1007/s12274-022-5269-3
Topics:

859

Views

5

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 27 August 2022
Revised: 03 October 2022
Accepted: 31 October 2022
Published: 15 December 2022
© Tsinghua University Press 2022
Return