AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (8.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Applications of MXenes in human-like sensors and actuators

Jinbo Pang1,§( )Songang Peng6,7,§Chongyang Hou1,§Xiao Wang8Ting Wang9,10Yu Cao11,12Weijia Zhou1Ding Sun14Kai Wang13Mark H. Rümmeli15,16,17,18,19( )Gianaurelio Cuniberti2,3,4,5Hong Liu1,20( )
Institute for Advanced Interdisciplinary Research (iAIR), Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan 250022, China
Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden 01069, Germany
Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden 01069, Germany
Dresden Center for Computational Materials Science, Technische Universität Dresden, Dresden 01062, Germany
Dresden Center for Intelligent Materials (GCL DCIM), Technische Universität Dresden, Dresden 01062, Germany
High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology (Ministry of Education), Northeast Electric Power University, Jilin 132012, China
School of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China
School of Electrical Engineering, Weihai Innovation Research Institute, Qingdao University, Qingdao 266000, China
School of Electrical and Computer Engineering, Jilin Jianzhu University, Changchun 130118, China
Institute for Complex Materials, Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden), 20 Helmholtz Strasse, Dresden 01069, Germany
College of Energy, Soochow Institute for Energy and Materials Innovations Soochow University, Suzhou 215006, China
Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie Sklodowskiej 34, Zabrze 41-819, Poland
Center for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. Listopadu 15, Ostrava 708 33, Czech Republic
State Key Laboratory of Crystal Materials, Center of Bio & Micro/Nano Functional Materials, Shandong University, Jinan 250100, China

§ Jinbo Pang, Songang Peng, and Chongyang Hou contributed equally to this work.

Show Author Information

Graphical Abstract

This work provides a comprehensive review on the emerging human-like sensors and actuators based on MXene materials, which cover the advances in intelligent sensors that mimic five senses and the actuators that simulate artificial muscles. Future humanoid robots may become true with the continuous progress in materials synthesis and device integrations.

Abstract

Human beings perceive the world through the senses of sight, hearing, smell, taste, touch, space, and balance. The first five senses are prerequisites for people to live. The sensing organs upload information to the nervous systems, including the brain, for interpreting the surrounding environment. Then, the brain sends commands to muscles reflexively to react to stimuli, including light, gas, chemicals, sound, and pressure. MXene, as an emerging two-dimensional material, has been intensively adopted in the applications of various sensors and actuators. In this review, we update the sensors to mimic five primary senses and actuators for stimulating muscles, which employ MXene-based film, membrane, and composite with other functional materials. First, a brief introduction is delivered for the structure, properties, and synthesis methods of MXenes. Then, we feed the readers the recent reports on the MXene-derived image sensors as artificial retinas, gas sensors, chemical biosensors, acoustic devices, and tactile sensors for electronic skin. Besides, the actuators of MXene-based composite are introduced. Eventually, future opportunities are given to MXene research based on the requirements of artificial intelligence and humanoid robot, which may induce prospects in accompanying healthcare and biomedical engineering applications.

References

[1]

Du, Z. G.; Yang, S. B.; Li, S. M.; Lou, J.; Zhang, S. Q.; Wang, S.; Li, B.; Gong, Y. J.; Song, L.; Zou, X. L. et al. Conversion of non-van der Waals solids to 2D transition-metal chalcogenides. Nature 2020, 577, 492–496.

[2]

Xia, Y.; Mathis, T. S.; Zhao, M. Q.; Anasori, B.; Dang, A. L.; Zhou, Z. H.; Cho, H.; Gogotsi, Y.; Yang, S. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 2018, 557, 409–412.

[3]

Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M. K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C. M. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 2020, 369, 446–450.

[4]

Kamysbayev, V.; Filatov, A. S.; Hu, H. C.; Rui, X.; Lagunas, F.; Wang, D.; Klie, R. F.; Talapin, D. V. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 2020, 369, 979–983.

[5]

Naguib, M.; Barsoum, M. W.; Gogotsi, Y. Ten years of progress in the synthesis and development of MXenes. Adv. Mater. 2021, 33, 2103393.

[6]

Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

[7]

VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581.

[8]

Malaki, M.; Varma, R. S. Mechanotribological aspects of MXene-reinforced nanocomposites. Adv. Mater. 2020, 32, 2003154.

[9]

Zhou, T. Z.; Wu, C.; Wang, Y. L.; Tomsia, A. P.; Li, M. Z.; Saiz, E.; Fang, S. L.; Baughman, R. H.; Jiang, L.; Cheng, Q. F. Super-tough MXene-functionalized graphene sheets. Nat. Commun. 2020, 11, 2077.

[10]

Lipatov, A.; Goad, A.; Loes, M. J.; Vorobeva, N. S.; Abourahma, J.; Gogotsi, Y.; Sinitskii, A. High electrical conductivity and breakdown current density of individual monolayer Ti3C2Tx MXene flakes. Matter 2021, 4, 1413–1427.

[11]

Ling, Z.; Ren, C. E.; Zhao, M. Q.; Yang, J.; Giammarco, J. M.; Qiu, J. S.; Barsoum, M. W.; Gogotsi, Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 2014, 111, 16676–16681.

[12]

Dong, Y. C.; Chertopalov, S.; Maleski, K.; Anasori, B.; Hu, L. Y.; Bhattacharya, S.; Rao, A. M.; Gogotsi, Y.; Mochalin, V. N.; Podila, R. Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes. Adv. Mater. 2018, 30, 1705714.

[13]

Jeon, J.; Yang, Y. J.; Choi, H.; Park, J. H.; Lee, B. H.; Lee, S. MXenes for future nanophotonic device applications. Nanophotonics 2020, 9, 1831–1853.

[14]

Khazaei, M.; Arai, M.; Sasaki, T.; Chung, C. Y.; Venkataramanan, N. S.; Estili, M.; Sakka, Y.; Kawazoe, Y. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 2013, 23, 2185–2192.

[15]

Iqbal, M.; Fatheema, J.; Noor, Q.; Rani, M.; Mumtaz, M.; Zheng, R. K.; Khan, S. A.; Rizwan, S. Co-existence of magnetic phases in two-dimensional MXene. Mater. Today Chem. 2020, 16, 100271.

[16]

Li, R. S.; Gao, Q.; Xing, H. N.; Su, Y. Z.; Zhang, H. M.; Zeng, D.; Fan, B. B.; Zhao, B. Lightweight, multifunctional MXene/polymer composites with enhanced electromagnetic wave absorption and high-performance thermal conductivity. Carbon 2021, 183, 301–312.

[17]

Luo, Y.; Xie, Y. H.; Jiang, H.; Chen, Y.; Zhang, L.; Sheng, X. X.; Xie, D. L.; Wu, H.; Mei, Y. Flame-retardant and form-stable phase change composites based on MXene with high thermostability and thermal conductivity for thermal energy storage. Chem. Eng. J. 2021, 420, 130466.

[18]

Zhao, S.; Zhang, H. B.; Luo, J. Q.; Wang, Q. W.; Xu, B.; Hong, S.; Yu, Z. Z. Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 2018, 12, 11193–11202.

[19]

Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Hong, S. M.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.

[20]

Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005.

[21]

Zhang, J. Z.; Kong, N.; Uzun, S.; Levitt, A.; Seyedin, S.; Lynch, P. A.; Qin, S.; Han, M. K.; Yang, W. R.; Liu, J. Q. et al. Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 2020, 32, 2001093.

[22]

Chen, R. S.; Ding, G. L.; Feng, Z. H.; Zhang, S. R.; Mo, W. A.; Han, S. T.; Zhou, Y. MoS2 transistor with weak fermi level pinning via MXene contacts. Adv. Funct. Mater. 2022, 32, 2204288.

[23]

Gao, L. F.; Ma, C. Y.; Wei, S. R.; Kuklin, A. V.; Zhang, H.; Ågren, H. Applications of few-layer Nb2C MXene: Narrow-band photodetectors and femtosecond mode-locked fiber lasers. ACS Nano 2021, 15, 954–965.

[24]

Zhang, Y.; Xu, Y.; Gao, L.; Liu, X.; Fu, Y.; Ma, C.; Ge, Y.; Cao, R.; Zhang, X.; Al-Hartomy, O. A. et al. MXene-based mixed-dimensional Schottky heterojunction towards self-powered flexible high-performance photodetector. Mater. Today Phys. 2021, 21, 100479.

[25]

Agresti, A.; Pazniak, A.; Pescetelli, S.; Di Vito, A.; Rossi, D.; Pecchia, A.; Der Maur, M. A.; Liedl, A.; Larciprete, R.; Kuznetsov, D. V. et al. Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells. Nat. Mater. 2019, 18, 1228–1234.

[26]

Fu, B.; Sun, J. X.; Wang, C.; Shang, C.; Xu, L. J.; Li, J. B.; Zhang, H. MXenes: Synthesis, optical properties, and applications in ultrafast photonics. Small 2021, 17, 2006054.

[27]

Kim, H.; Wang, Z. W.; Alshareef, H. N. MXetronics: Electronic and photonic applications of MXenes. Nano Energy 2019, 60, 179–197.

[28]

Jin, X. X.; Wang, J. F.; Dai, L. Z.; Liu, X. Y.; Li, L.; Yang, Y. Y.; Cao, Y. X.; Wang, W. J.; Wu, H.; Guo, S. Y. Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 2020, 380, 122475.

[29]

Siriwardane, E. M. D.; Karki, P.; Loh, Y. L.; Çakır, D. Strain-spintronics: Modulating electronic and magnetic properties of Hf2MnC2O2 MXene by uniaxial strain. J. Phys. Chem. C 2019, 123, 12451–12459.

[30]

Kim, H.; Alshareef, H. N. MXetronics: MXene-enabled electronic and photonic devices. ACS Materials Lett. 2020, 2, 55–70.

[31]

Zhang, J. Q.; Zhao, Y. F.; Guo, X.; Chen, C.; Dong, C. L.; Liu, R. S.; Han, C. P.; Li, Y. D.; Gogotsi, Y.; Wang, G. X. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 2018, 1, 985–992.

[32]

Palankar, R. Microrobots mop-up nanoplastics. Nat. Nanotechnol. 2022, 17, 821.

[33]

Liu, S. Y.; Liu, J. Y.; Liu, X. F.; Shang, J. X.; Xu, L.; Yu, R. H.; Shui, J. L. Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature. Nat. Nanotechnol. 2021, 16, 331–336.

[34]

Wu, F.; Zheng, H. L.; Wang, W. Z.; Wu, Q.; Zhang, Q.; Guo, J. Y.; Pu, B. Z.; Shi, X. Y.; Li, J. B.; Chen, X. M. et al. Rapid eradication of antibiotic-resistant bacteria and biofilms by MXene and near-infrared light through photothermal ablation. Sci. Chin. Mater. 2020, 64, 748–758.

[35]

Sun, L. Y.; Fan, L.; Bian, F. K.; Chen, G. P.; Wang, Y. T.; Zhao, Y. J. MXene-integrated microneedle patches with innate molecule encapsulation for wound healing. Research (Wash. D C) 2021, 2021, 9838490.

[36]

Li, X. L.; Li, M.; Yang, Q.; Wang, D. H.; Ma, L. T.; Liang, G. J.; Huang, Z. D.; Dong, B. B.; Huang, Q.; Zhi, C. Y. Vertically aligned Sn4+ preintercalated Ti2CTx MXene sphere with enhanced Zn ion transportation and superior cycle lifespan. Adv. Energy Mater. 2020, 10, 2001394.

[37]

Li, M.; Li, X. L.; Qin, G. F.; Luo, K.; Lu, J.; Li, Y. B.; Liang, G. J.; Huang, Z. D.; Zhou, J.; Hultman, L. et al. Halogenated Ti3C2 MXenes with electrochemically active terminals for high-performance zinc ion batteries. ACS Nano 2021, 15, 1077–1085.

[38]

Wang, J. J.; Du, C. F.; Xue, Y. Q.; Tan, X. Y.; Kang, J. Z.; Gao, Y.; Yu, H.; Yan, Q. Y. MXenes as a versatile platform for reactive surface modification and superior sodium-ion storages. Exploration 2021, 1, 20210024.

[39]

Peng, S. A.; Jin, Z.; Zhang, D. Y.; Shi, J. Y.; Mao, D. C.; Wang, S. Q.; Yu, G. H. Carrier-number-fluctuation induced ultralow 1/f noise level in top-gated graphene field effect transistor. ACS Appl. Mater. Interfaces 2017, 9, 6661–6665.

[40]

Peng, S. A.; Jin, Z.; Zhang, D. Y.; Shi, J. Y.; Niu, J. B.; Huang, X. N.; Yao, Y.; Zhang, Y. H.; Yu, G. H. How do contact and channel contribute to the dirac points in graphene field-effect transistors? Adv. Electron. Mater. 2018, 4, 1800158.

[41]

Peng, S. A.; Jin, Z.; Zhang, D. Y.; Shi, J. Y.; Zhang, Y. H.; Yu, G. H. Evidence of electric field-tunable tunneling probability in graphene and metal contact. Nanoscale 2017, 9, 9520–9528.

[42]

Peng, S. A.; Jin, Z.; Yao, Y.; Li, L.; Zhang, D. Y.; Shi, J. Y.; Huang, X. N.; Niu, J. B.; Zhang, Y. H.; Yu, G. H. Metal-contact-induced transition of electrical transport in monolayer MoS2: From thermally activated to variable-range hopping. Adv. Electron. Mater. 2019, 5, 1900042.

[43]

Peng, S. A.; Zhang, J.; Jin, Z.; Zhang, D. Y.; Shi, J. Y.; Wei, S. H. Electric-field induced doping polarity conversion in top-gated transistor based on chemical vapor deposition of graphene. Crystals 2022, 12, 184.

[44]

Peng, S. A.; Jin, Z.; Yao, Y.; Huang, X. N.; Zhang, D. Y.; Niu, J. B.; Shi, J. Y.; Zhang, Y. H.; Yu, G. H. Controllable p-to-n type conductance transition in top-gated graphene field effect transistor by interface trap engineering. Adv. Electron. Mater. 2020, 6, 2000496.

[45]

Peng, S. A.; Jin, Z.; Zhang, D. Y.; Shi, J. Y.; Niu, J. B.; Zhu, C. Y.; Zhang, Y. H.; Yu, G. H. The effect of metal contact doping on the scaled graphene field effect transistor. Adv. Eng. Mater. 2022, 24, 2100935.

[46]

Chaudhuri, K.; Alhabeb, M.; Wang, Z. X.; Shalaev, V. M.; Gogotsi, Y.; Boltasseva, A. Highly broadband absorber using plasmonic titanium carbide (MXene). ACS Photonics 2018, 5, 1115–1122.

[47]

Hantanasirisakul, K.; Zhao, M. Q.; Urbankowski, P.; Halim, J.; Anasori, B.; Kota, S.; Ren, C. E.; Barsoum, M. W.; Gogotsi, Y. Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv. Electron. Mater. 2016, 2, 1600050.

[48]

Guo, J. X.; Sun, Y.; Liu, B. Z.; Zhang, Q. R.; Peng, Q. M. Two-dimensional scandium-based carbides (MXene): Band gap modulation and optical properties. J. Alloys Compd. 2017, 712, 752–759.

[49]

Hantanasirisakul, K.; Gogotsi, Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv. Mater. 2018, 30, 1804779.

[50]

Bao, Q. L.; Zhang, H.; Wang, Y.; Ni, Z. H.; Yan, Y. L.; Shen, Z. X.; Loh, K. P.; Tang, D. Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 2009, 19, 3077–3083.

[51]

Wang, T. H.; Zhu, Y. F.; Jiang, Q. Bandgap opening of bilayer graphene by dual doping from organic molecule and substrate. J. Phys. Chem. C 2013, 117, 12873–12881.

[52]

Carvalho, A.; Wang, M.; Zhu, X.; Rodin, A. S.; Su, H. B.; Neto, A. H. C. Phosphorene: From theory to applications. Nat. Rev. Mater. 2016, 1, 16061.

[53]

Hu, G. H.; Albrow-Owen, T.; Jin, X. X.; Ali, A.; Hu, Y. W.; Howe, R. C. T.; Shehzad, K.; Yang, Z. Y.; Zhu, X. K.; Woodward, R. I. et al. Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun. 2017, 8, 278.

[54]

Lu, S. B.; Miao, L. L.; Guo, Z. N.; Qi, X.; Zhao, C. J.; Zhang, H.; Wen, S. C.; Tang, D. Y.; Fan, D. Y. Broadband nonlinear optical response in multi-layer black phosphorus: An emerging infrared and mid-infrared optical material. Opt. Express 2015, 23, 11183–11194.

[55]

Luo, Z. Q.; Huang, Y. Z.; Weng, J.; Cheng, H. H.; Lin, Z. Q.; Xu, B.; Cai, Z. P.; Xu, H. Y. 1.06 μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber. Opt. Express 2013, 21, 29516–29522.

[56]

Chen, C. Y.; Xie, Z. J.; Feng, Y.; Yi, H. M.; Liang, A. J.; He, S. L.; Mou, D. X.; He, J. F.; Peng, Y. Y.; Liu, X. et al. Tunable Dirac fermion dynamics in topological insulators. Sci. Rep. 2013, 3, 2411.

[57]

Hajlaoui, M.; Papalazarou, E.; Mauchain, J.; Lantz, G.; Moisan, N.; Boschetto, D.; Jiang, Z.; Miotkowski, I.; Chen, Y. P.; Taleb-Ibrahimi, A. et al. Ultrafast surface carrier dynamics in the topological insulator Bi2Te3. Nano Lett. 2012, 12, 3532–3536.

[58]

Zhang, H.; Lu, S. B.; Zheng, J.; Du, J.; Wen, S. C.; Tang, D. Y.; Loh, K. P. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt. Express 2014, 22, 7249–7260.

[59]

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

[60]

Zhang, Y. X.; Wang, S. X.; Yu, H. H.; Zhang, H. J.; Chen, Y. X.; Mei, L. M.; Di Lieto, A.; Tonelli, M.; Wang, J. Y. Atomic-layer molybdenum sulfide optical modulator for visible coherent light. Sci. Rep. 2015, 5, 11342.

[61]

Cui, H. P.; Zheng, K.; Xie, Z. J.; Yu, J. B.; Zhu, X. Y.; Ren, H.; Wang, Z. P.; Zhang, F.; Li, X. D.; Tao, L. Q. et al. Tellurene nanoflake-based NO2 sensors with superior sensitivity and a sub-parts-per-billion detection limit. ACS Appl. Mater. Interfaces 2020, 12, 47704–47713.

[62]

Wu, W. Z.; Qiu, G.; Wang, Y. X.; Wang, R. X.; Ye, P. D. Tellurene: Its physical properties, scalable nanomanufacturing, and device applications. Chem. Soc. Rev. 2018, 47, 7203–7212.

[63]

Sang, D. K.; Ding, T.; Wu, M. N.; Li, Y.; Li, J. Q.; Liu, F. S.; Guo, Z. N.; Zhang, H.; Xie, H. P. Monolayer β-tellurene: A promising p-type thermoelectric material via first-principles calculations. Nanoscale 2019, 11, 18116–18123.

[64]

Liu, N. N.; Bo, G. Y.; Liu, Y. N.; Xu, X.; Du, Y.; Dou, S. X. Recent progress on germanene and functionalized germanene: Preparation, characterizations, applications, and challenges. Small 2019, 15, 1805147.

[65]
Zhao, F. L.; Feng, Y. Y.; Feng, W. Germanium-based monoelemental and binary two-dimensional materials: Theoretical and experimental investigations and promising applications. InfoMat, in press, https://doi.org/10.1002/inf2.12365.
[66]

Dávila, M. E.; Xian, L.; Cahangirov, S.; Rubio, A.; Le Lay, G. Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 2014, 16, 095002.

[67]

Kiraly, B.; Liu, X. L.; Wang, L. Q.; Zhang, Z. H.; Mannix, A. J.; Fisher, B. L.; Yakobson, B. I.; Hersam, M. C.; Guisinger, N. P. Borophene synthesis on Au(111). ACS Nano 2019, 13, 3816–3822.

[68]

Tokmachev, A. M.; Averyanov, D. V.; Parfenov, O. E.; Taldenkov, A. N.; Karateev, I. A.; Sokolov, I. S.; Kondratev, O. A.; Storchak, V. G. Emerging two-dimensional ferromagnetism in silicene materials. Nat. Commun. 2018, 9, 1672.

[69]

Singh, S.; Zanolli, Z.; Amsler, M.; Belhadji, B.; Sofo, J. O.; Verstraete, M. J.; Romero, A. H. Low-energy phases of bi monolayer predicted by structure search in two dimensions. J. Phys. Chem. Lett. 2019, 10, 7324–7332.

[70]

Johnson, N. W.; Vogt, P.; Resta, A.; De Padova, P.; Perez, I.; Muir, D.; Kurmaev, E. Z.; Le Lay, G.; Moewes, A. The metallic nature of epitaxial silicene monolayers on Ag(111). Adv. Funct. Mater. 2014, 24, 5253–5259.

[71]

Pumera, M.; Sofer, Z. 2D monoelemental arsenene, antimonene, and bismuthene: Beyond black phosphorus. Adv. Mater. 2017, 29, 1605299.

[72]

Huang, Z. Y.; Liu, H. T.; Hu, R.; Qiao, H.; Wang, H. D.; Liu, Y. D.; Qi, X.; Zhang, H. Structures, properties and application of 2D monoelemental materials (Xenes) as graphene analogues under defect engineering. Nano Today 2020, 35, 100906.

[73]

Gablech, I.; Pekárek, J.; Klempa, J.; Svatoš, V.; Sajedi-Moghaddam, A.; Neužil, P.; Pumera, M. Monoelemental 2D materials-based field effect transistors for sensing and biosensing: Phosphorene, antimonene, arsenene, silicene, and germanene go beyond graphene. TrAC Trends Anal. Chem. 2018, 105, 251–262.

[74]

Zhou, D. C.; Li, H. P.; Si, N.; Li, H.; Fuchs, H.; Niu, T. C. Epitaxial growth of main group monoelemental 2D materials. Adv. Funct. Mater. 2021, 31, 2006997.

[75]

Qiao, H.; Liu, H. T.; Huang, Z. Y.; Hu, R.; Ma, Q.; Zhong, J. X.; Qi, X. Tunable electronic and optical properties of 2D monoelemental materials beyond graphene for promising applications. Energy Environ. Mater. 2021, 4, 522–543.

[76]

Zhu, F. F.; Chen, W. J.; Xu, Y.; Gao, C. L.; Guan, D. D.; Liu, C. H.; Qian, D.; Zhang, S. C.; Jia, J. F. Epitaxial growth of two-dimensional stanene. Nat. Mater. 2015, 14, 1020–1025.

[77]

Dong, X.; Zhang, L. Z.; Yoon, M.; Zhang, P. P. The role of substrate on stabilizing new phases of two-dimensional tin. 2D Mater. 2021, 8, 045003.

[78]

Hofmann, E. V. S.; Scalise, E.; Montalenti, F.; Stock, T. J. Z.; Schofield, S. R.; Capellini, G.; Miglio, L.; Curson, N. J.; Klesse, W. M. The formation of a Sn monolayer on Ge(1 0 0) studied at the atomic scale. Appl. Surf. Sci. 2021, 561, 149961.

[79]

Chen, R. B.; Chen, S. C.; Chiu, C. W.; Lin, M. F. Optical properties of monolayer tinene in electric fields. Sci. Rep. 2017, 7, 1849.

[80]

Hu, Y.; Liang, J. C.; Xia, Y. R.; Zhao, C.; Jiang, M. H.; Ma, J.; Tie, Z. X.; Jin, Z. 2D arsenene and arsenic materials: Fundamental properties, preparation, and applications. Small 2022, 18, 2104556.

[81]

Ye, X. J.; Zhu, G. L.; Liu, J.; Liu, C. S.; Yan, X. H. Monolayer, bilayer, and heterostructure arsenene as potential anode materials for magnesium-ion batteries: A first-principles study. J. Phys. Chem. C 2019, 123, 15777–15786.

[82]

Benzidi, H.; Lakhal, M.; Garara, M.; Abdellaoui, M.; Benyoussef, A.; El Kenz, A.; Mounkachi, O. Arsenene monolayer as an outstanding anode material for (Li/Na/Mg)-ion batteries: Density functional theory. Phys. Chem. Chem. Phys. 2019, 21, 19951–19962.

[83]

Shi, Z. Q.; Li, H. P.; Yuan, Q. Q.; Song, Y. H.; Lv, Y. Y.; Shi, W.; Jia, Z. Y.; Gao, L. B.; Chen, Y. B.; Zhu, W. G. et al. Van der Waals heteroepitaxial growth of monolayer Sb in a puckered honeycomb structure. Adv. Mater. 2019, 31, 1806130.

[84]

Aktürk, E.; Aktürk, O. Ü.; Ciraci, S. Single and bilayer bismuthene: Stability at high temperature and mechanical and electronic properties. Phys. Rev. B 2016, 94, 014115.

[85]

Xian, L. D.; Paz, A. P.; Bianco, E.; Ajayan, P. M.; Rubio, A. Square selenene and tellurene: Novel group VI elemental 2D materials with nontrivial topological properties. 2D Mater. 2017, 4, 041003.

[86]

Badalov, S. V.; Yagmurcukardes, M.; Peeters, F. M.; Sahin, H. Enhanced stability of single-layer w-gallenene through hydrogenation. J. Phys. Chem. C 2018, 122, 28302–28309.

[87]

Gao, L. F.; Li, C.; Huang, W. C.; Mei, S.; Lin, H.; Ou, Q.; Zhang, Y.; Guo, J.; Zhang, F.; Xu, S. X. et al. MXene/polymer membranes: Synthesis, properties, and emerging applications. Chem. Mater. 2020, 32, 1703–1747.

[88]

Liu, L. Y.; Orbay, M.; Luo, S.; Duluard, S.; Shao, H.; Harmel, J.; Rozier, P.; Taberna, P. L.; Simon, P. Exfoliation and delamination of Ti3C2Tx MXene prepared via molten salt etching route. ACS Nano 2022, 16, 111–118.

[89]

Halim, J.; Lukatskaya, M. R.; Cook, K. M.; Lu, J.; Smith, C. R.; Näslund, L. Å.; May, S. J.; Hultman, L.; Gogotsi, Y.; Eklund, P. et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 2014, 26, 2374–2381.

[90]

Zhao, X. X.; Sun, W. W.; Geng, D. C.; Fu, W.; Dan, J. D.; Xie, Y.; Kent, P. R. C.; Zhou, W.; Pennycook, S. J.; Loh, K. P. Edge segregated polymorphism in 2D molybdenum carbide. Adv. Mater. 2019, 31, 1808343.

[91]

Wang, B.; Zhong, S. P.; Xu, P.; Zhang, H. Booming development and present advances of two dimensional MXenes for photodetectors. Chem. Eng. J. 2021, 403, 126336.

[92]

Abdolhosseinzadeh, S.; Jiang, X. T.; Zhang, H.; Qiu, J. S.; Zhang, C. F. Perspectives on solution processing of two-dimensional MXenes. Mater. Today 2021, 48, 214–240.

[93]

Zou, J.; Wu, J.; Wang, Y. Z.; Deng, F. X.; Jiang, J. Z.; Zhang, Y. Z.; Liu, S.; Li, N.; Zhang, H.; Yu, J. G. et al. Additive-mediated intercalation and surface modification of MXenes. Chem. Soc. Rev. 2022, 51, 2972–2990.

[94]

Yin, T.; Li, Y.; Wang, R. H.; Al-Hartomy, O. A.; Al-Ghamdi, A.; Wageh, S.; Luo, X. L.; Tang, X.; Zhang, H. Synthesis of Ti3C2Fx MXene with controllable fluorination by electrochemical etching for lithium-ion batteries applications. Ceram. Int. 2021, 47, 28642–28649.

[95]

Cao, F. C.; Zhang, Y.; Wang, H. Q.; Khan, K.; Tareen, A. K.; Qian, W. J.; Zhang, H.; Ågren, H. Recent advances in oxidation stable chemistry of 2D MXenes. Adv. Mater. 2022, 34, 2107554.

[96]

Gao, L. F.; Bao, W. L.; Kuklin, A. V.; Mei, S.; Zhang, H.; Ågren, H. Hetero-MXenes: Theory, synthesis, and emerging applications. Adv. Mater. 2021, 33, 2004129.

[97]

Huang, W. C.; Hu, L. P.; Tang, Y. F.; Xie, Z. X.; Zhang, H. Recent advances in functional 2D MXene-based nanostructures for next-generation devices. Adv. Funct. Mater. 2020, 30, 2005223.

[98]

Abbasi, N. M.; Xiao, Y.; Peng, L.; Duo, Y. H.; Wang, L. D.; Zhang, L.; Wang, B.; Zhang, H. Recent advancement for the synthesis of MXene derivatives and their sensing protocol. Adv. Mater. Technol. 2021, 6, 2001197.

[99]

Sundaram, A.; Ponraj, J. S.; Wang, C.; Peng, W. K.; Manavalan, R. K.; Dhanabalan, S. C.; Zhang, H.; Gaspar, J. Engineering of 2D transition metal carbides and nitrides MXenes for cancer therapeutics and diagnostics. J. Mater. Chem. B 2020, 8, 4990–5013.

[100]

Xu, N.; Li, H. B.; Gan, Y. Y.; Chen, H. L.; Li, W. J.; Zhang, F.; Jiang, X. T.; Shi, Y. H.; Liu, J. F.; Wen, Q. et al. Zero-dimensional MXene-based optical devices for ultrafast and ultranarrow photonics applications. Adv. Sci. 2020, 7, 2002209.

[101]

Lin, X. P.; Li, Z. J.; Qiu, J. M.; Wang, Q.; Wang, J. X.; Zhang, H.; Chen, T. K. Fascinating MXene nanomaterials: Emerging opportunities in the biomedical field. Biomater. Sci. 2021, 9, 5437–5471.

[102]

Yue, Y.; Liu, N. S.; Ma, Y. N.; Wang, S. L.; Liu, W. J.; Luo, C.; Zhang, H.; Cheng, F.; Rao, J. Y.; Hu, X. K. et al. Highly self-healable 3D microsupercapacitor with MXene-graphene composite aerogel. ACS Nano 2018, 12, 4224–4232.

[103]

Yao, Y. H.; Xia, X. F.; Cheng, Z.; Wei, K. K.; Jiang, X. T.; Dong, J. J.; Zhang, H. All-optical modulator using MXene inkjet-printed microring resonator. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 5900306.

[104]

Abbasi, N. M.; Xiao, Y.; Zhang, L.; Peng, L.; Duo, Y. H.; Wang, L. D.; Yin, P.; Ge, Y. Q.; Zhu, H. Y.; Zhang, B. et al. Heterostructures of titanium-based MXenes in energy conversion and storage devices. J. Mater. Chem. C 2021, 9, 8395–8465.

[105]

Li, X. S.; Liu, F.; Huang, D. P.; Xue, N.; Dang, Y. Y.; Zhang, M. Q.; Zhang, L. L.; Li, B.; Liu, D.; Wang, L. et al. Nonoxidized MXene quantum dots prepared by microexplosion method for cancer catalytic therapy. Adv. Funct. Mater. 2020, 30, 2000308.

[106]

Alijani, H.; Rezk, A. R.; Farsani, M. M. K.; Ahmed, H.; Halim, J.; Reineck, P.; Murdoch, B. J.; El-Ghazaly, A.; Rosen, J.; Yeo, L. Y. Acoustomicrofluidic synthesis of pristine ultrathin Ti3C2Tz MXene nanosheets and quantum dots. ACS Nano 2021, 15, 12099–12108.

[107]

Feng, Z.; Yiyu, G.; Libin, J.; Qiao, W. MXene quantum dot synthesis, optical properties, and ultra-narrow photonics: A comparison of various sizes and concentrations. Laser Photonics Rev. 2021, 15, 2100059.

[108]

Xue, Q.; Zhang, H. J.; Zhu, M. S.; Pei, Z. X.; Li, H. F.; Wang, Z. F.; Huang, Y.; Huang, Y.; Deng, Q. H.; Zhou, J. et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv. Mater. 2017, 29, 1604847.

[109]

Huang, T.; Ding, J. F.; Liu, Z. R.; Zhang, R.; Zhang, B. L.; Xiong, K.; Zhang, L. Z.; Wang, C.; Shen, S. L.; Li, C. Y. et al. Insight into the underlying competitive mechanism for the shift of the charge neutrality point in a trilayer-graphene field-effect transistor. eScience 2022, 2, 319–328.

[110]

Wang, H.; Wu, Y.; Yuan, X. Z.; Zeng, G. M.; Zhou, J.; Wang, X.; Chew, J. W. Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: State-of-the-art progresses and challenges. Adv. Mater. 2018, 30, 1704561.

[111]

Ghidiu, M.; Lukatskaya, M. R.; Zhao, M. Q.; Gogotsi, Y.; Barsoum, M. W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 2014, 516, 78–81.

[112]

Zheng, W.; Halim, J.; El Ghazaly, A.; Etman, A. S.; Tseng, E. N.; Persson, P. O. Å.; Rosen, J.; Barsoum, M. W. Flexible free-standing MoO3/Ti3C2Tz MXene composite films with high gravimetric and volumetric capacities. Adv. Sci. 2021, 8, 2003656.

[113]

Liu, H.; Chen, X. Y.; Zheng, Y. J.; Zhang, D. B.; Zhao, Y.; Wang, C. F.; Pan, C. F.; Liu, C. T.; Shen, C. Y. Lightweight, superelastic, and hydrophobic polyimide nanofiber /MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications. Adv. Funct. Mater. 2021, 31, 2008006.

[114]

Geng, D. C.; Zhao, X. X.; Chen, Z. X.; Sun, W. W.; Fu, W.; Chen, J. Y.; Liu, W.; Zhou, W.; Loh, K. P. Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv. Mater. 2017, 29, 1700072.

[115]

Sang, X. H.; Xie, Y.; Lin, M. W.; Alhabeb, M.; Van Aken, K. L.; Gogotsi, Y.; Kent, P. R. C.; Xiao, K.; Unocic, R. R. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 2016, 10, 9193–9200.

[116]

Zhang, X.; An, D.; Bi, Z. S.; Shan, W.; Zhu, B. B.; Zhou, L.; Yu, L. M.; Zhang, H.; Xia, S. W.; Qiu, M. Ti3C2-MXene@N-doped carbon heterostructure-based electrochemical sensor for simultaneous detection of heavy metals. J. Electroanal. Chem. 2022, 911, 116239.

[117]

Li, N.; Jiang, Y.; Xiao, Y.; Meng, B.; Xing, C. Y.; Zhang, H.; Peng, Z. C. A fully inkjet-printed transparent humidity sensor based on a Ti3C2/Ag hybrid for touchless sensing of finger motion. Nanoscale 2019, 11, 21522–21531.

[118]

Zhu, B. B.; An, D.; Bi, Z. S.; Liu, W.; Shan, W.; Li, Y. H.; Nie, G. H.; Xie, N.; Al-Hartomy, O. A.; Al-Ghamdi, A. et al. Two-dimensional nitrogen-doped Ti3C2 promoted catalysis performance of silver nanozyme for ultrasensitive detection of hydrogen peroxide. Chem Electro Chem 2022, 9, e202200050.

[119]

Zhang, Y.; Jiang, X. T.; Zhang, J. J.; Zhang, H.; Li, Y. C. Simultaneous voltammetric determination of acetaminophen and isoniazid using MXene modified screen-printed electrode. Biosens. Bioelectron. 2019, 130, 315–321.

[120]

Liu, J.; Jiang, X. T.; Zhang, R. Y.; Zhang, Y.; Wu, L. M.; Lu, W.; Li, J. Q.; Li, Y. C.; Zhang, H. MXene-enabled electrochemical microfluidic biosensor: Applications toward multicomponent continuous monitoring in whole blood. Adv. Funct. Mater. 2019, 29, 1807326.

[121]

Chen, Y. Z.; Ge, Y. Q.; Huang, W. C.; Li, Z. J.; Wu, L. M.; Zhang, H.; Li, X. J. Refractive index sensors based on Ti3C2Tx MXene fibers. ACS Appl. Nano Mater. 2020, 3, 303–311.

[122]

Ding, H. J.; Zeng, Z. P.; Wang, Z. W.; Li, X. L.; Yildirim, T.; Xie, Q. L.; Zhang, H.; Wageh, S.; Al-Ghamdi, A. A.; Zhang, X. et al. Deep learning-enabled MXene/PEDOT:PSS acoustic sensor for speech recognition and skin-vibration detection. Adv. Intell. Syst. 2022, 4, 2200140.

[123]

Ding, H. J.; Shu, X. L.; Jin, Y. K.; Fan, T. J.; Zhang, H. Recent advances in nanomaterial-enabled acoustic devices for audible sound generation and detection. Nanoscale 2019, 11, 5839–5860.

[124]

Guo, J. H.; Yu, Y. R.; Zhang, H.; Sun, L. Y.; Zhao, Y. J. Elastic MXene hydrogel microfiber-derived electronic skin for joint monitoring. ACS Appl. Mater. Interfaces 2021, 13, 47800–47806.

[125]

Guo, J. H.; Yu, Y. R.; Zhang, D. G.; Zhang, H.; Zhao, Y. J. Morphological hydrogel microfibers with MXene encapsulation for electronic skin. Research (Wash. D C) 2021, 2021, 7065907.

[126]

Fan, Q.; Wang, L. D.; Xu, D.; Duo, Y. H.; Gao, J.; Zhang, L.; Wang, X. B.; Chen, X.; Li, J. H.; Zhang, H. Solution-gated transistors of two-dimensional materials for chemical and biological sensors: Status and challenges. Nanoscale 2020, 12, 11364–11394.

[127]

Dillon, A. D.; Ghidiu, M. J.; Krick, A. L.; Griggs, J.; May, S. J.; Gogotsi, Y.; Barsoum, M. W.; Fafarman, A. T. Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv. Funct. Mater. 2016, 26, 4162–4168.

[128]

Zhou, J.; Yang, T. Q.; Chen, J. J.; Wang, C.; Zhang, H.; Shao, Y. H. Two-dimensional nanomaterial-based plasmonic sensing applications: Advances and challenges. Coord. Chem. Rev. 2020, 410, 213218.

[129]

Xue, T. Y.; Liang, W. Y.; Li, Y. W.; Sun, Y. H.; Xiang, Y. J.; Zhang, Y. P.; Dai, Z. G.; Duo, Y. H.; Wu, L. M.; Qi, K. et al. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat. Commun. 2019, 10, 28.

[130]

Yang, T. Q.; Gao, L. F.; Wang, W. X.; Kang, J. L.; Zhao, G. H.; Li, D. L.; Chen, W.; Zhang, H. Berlin green framework-based gas sensor for room-temperature and high-selectivity detection of ammonia. Nano-Micro Lett. 2021, 13, 63.

[131]

Bai, S. L.; Sun, C. Z.; Yan, H.; Sun, X. M.; Zhang, H.; Luo, L.; Lei, X. D.; Wan, P. B.; Chen, X. D. Healable, transparent, room-temperature electronic sensors based on carbon nanotube network-coated polyelectrolyte multilayers. Small 2015, 11, 5807–5813.

[132]

Zhang, L.; Khan, K.; Zou, J. F.; Zhang, H.; Li, Y. C. Recent advances in emerging 2D material-based gas sensors: Potential in disease diagnosis. Adv. Mater. Interfaces 2019, 6, 1901329.

[133]

Wang, T.; Yang, H.; Qi, D. P.; Liu, Z. Y.; Cai, P. Q.; Zhang, H.; Chen, X. D. Mechano-based transductive sensing for wearable healthcare. Small 2018, 14, 1702933.

[134]

Wang, T.; Guo, Y. L.; Wan, P. B.; Sun, X. M.; Zhang, H.; Yu, Z. Z.; Chen, X. D. A flexible transparent colorimetric wrist strap sensor. Nanoscale 2017, 9, 869–874.

[135]

Xue, T. Y.; Bongu, S. R.; Huang, H.; Liang, W. Y.; Wang, Y. W.; Zhang, F.; Liu, Z. Y.; Zhang, Y. P.; Zhang, H.; Cui, X. Q. Ultrasensitive detection of microRNA using a bismuthene-enabled fluorescence quenching biosensor. Chem. Commun. 2020, 56, 7041–7044.

[136]

Ren, A. B.; Zou, J. H.; Lai, H. G.; Huang, Y. X.; Yuan, L. M.; Xu, H.; Shen, K.; Wang, H.; Wei, S. Y.; Wang, Y. F. et al. Direct laser-patterned MXene-perovskite image sensor arrays for visible-near infrared photodetection. Mater. Horiz. 2020, 7, 1901–1911.

[137]

Zhang, Y. Z.; Wang, Y.; Jiang, Q.; El-Demellawi, J. K.; Kim, H.; Alshareef, H. N. MXene printing and patterned coating for device applications. Adv. Mater. 2020, 32, 1908486.

[138]

Kurra, N.; Ahmed, B.; Gogotsi, Y.; Alshareef, H. N. MXene-on-paper coplanar microsupercapacitors. Adv. Energy Mater. 2016, 6, 1601372.

[139]

Hu, H. B.; Bai, Z. M.; Niu, B.; Wu, M. Z.; Hua, T. Binder-free bonding of modularized MXene thin films into thick film electrodes for on-chip micro-supercapacitors with enhanced areal performance metrics. J. Mater. Chem. A 2018, 6, 14876–14884.

[140]

Li, B.; Zhu, Q. B.; Cui, C.; Liu, C.; Wang, Z. H.; Feng, S.; Sun, Y.; Zhu, H. L.; Su, X.; Zhao, Y. M. et al. Patterning of wafer-scale MXene films for high-performance image sensor arrays. Adv. Mater. 2022, 34, 2201298.

[141]

Pang, J. B.; Wang, Y. H.; Yang, X. X.; Zhang, L.; Li, Y. F.; Zhang, Y.; Yang, J. L.; Yang, F.; Wang, X.; Cuniberti, G. et al. A wafer-scale two-dimensional platinum monosulfide ultrathin film via metal sulfurization for high performance photoelectronics. Mater. Adv. 2022, 3, 1497–1505.

[142]

Wang, J.; Liu, S. P.; Pang, J. B.; Song, P.; Tang, W. J.; Ren, Y. H.; Xia, W. Threshold decrease and output-power improvement in dual-loss Q-switched laser based on a few-layer WTe2 saturable absorber. Appl. Phys. Express 2020, 13, 052004.

[143]

Wang, Y. H.; Zhang, Y. H.; Cheng, Q. L.; Pang, J. B.; Chu, Y. J.; Ji, H.; Gao, J. W.; Han, Y. K.; Han, L.; Liu, H. et al. Large area uniform PtSx synthesis on sapphire substrate for performance improved photodetectors. Appl. Mater. Today 2021, 25, 101176.

[144]

Cao, Y.; Qu, P.; Wang, C. G.; Zhou, J.; Li, M. H.; Yu, X. M.; Yu, X.; Pang, J. B.; Zhou, W. J.; Liu, H. et al. Epitaxial growth of vertically aligned antimony selenide nanorod arrays for heterostructure based self-powered photodetector. Adv. Opt. Mater. 2022, 10, 2200816.

[145]

Cheng, Q. L.; Pang, J. B.; Sun, D. H.; Wang, J. G.; Zhang, S.; Liu, F.; Chen, Y. K.; Yang, R. Q.; Liang, N.; Lu, X. H. et al. WSe2 2D p-type semiconductor-based electronic devices for information technology: Design, preparation, and applications. InfoMat 2020, 2, 656–697.

[146]

Zhang, S.; Pang, J. B.; Cheng, Q. L.; Yang, F.; Chen, Y.; Liu, Y.; Li, Y. F.; Gemming, T.; Liu, X. Y.; Ibarlucea, B. et al. High-performance electronics and optoelectronics of monolayer tungsten diselenide full film from pre-seeding strategy. InfoMat 2021, 3, 1455–1469.

[147]

Wang, Y. H.; Pang, J. B.; Cheng, Q. L.; Han, L.; Li, Y. F.; Meng, X.; Ibarlucea, B.; Zhao, H. B.; Yang, F.; Liu, H. Y. et al. Applications of 2D-layered palladium diselenide and its van der Waals heterostructures in electronics and optoelectronics. Nano-Micro Lett. 2021, 13, 143.

[148]

Hu, C. Q.; Chen, H.; Li, L.; Huang, H.; Shen, G. Z. Ti3C2Tx MXene-RAN van der Waals heterostructure-based flexible transparent NIR photodetector array for 1,024 pixel image sensing application. Adv. Mater. Technol. 2022, 7, 2101639.

[149]

Li, L. D.; Ye, S.; Qu, J. L.; Zhou, F. F.; Song, J.; Shen, G. Z. Recent advances in perovskite photodetectors for image sensing. Small 2021, 17, 2005606.

[150]

Lou, Z.; Shen, G. Z. Flexible image sensors with semiconducting nanowires for biomimic visual applications. Small Struct. 2021, 2, 2000152.

[151]

Cao, Y.; Liu, C. Y.; Yang, T. H.; Zhao, Y.; Na, Y. L.; Jiang, C. X.; Zhou, J.; Pang, J. B.; Liu, H.; Rummeli, M. H. et al. Gradient bandgap modification for highly efficient carrier transport in antimony sulfide-selenide tandem solar cells. Sol. Energy Mater. Sol. Cells 2022, 246, 111926.

[152]

Cao, Y.; Liu, C. Y.; Jiang, J. H.; Zhu, X. Y.; Zhou, J.; Ni, J.; Zhang, J. J.; Pang, J. B.; Rummeli, M. H.; Zhou, W. J. et al. Theoretical insight into high-efficiency triple-junction tandem solar cells via the band engineering of antimony chalcogenides. Solar RRL 2021, 5, 2000800.

[153]

Li, L.; Chen, H. Y.; Fang, Z. M.; Meng, X. Y.; Zuo, C. T.; Lv, M. L.; Tian, Y. Z.; Fang, Y.; Xiao, Z.; Shan, C. X. et al. An electrically modulated single-color/dual-color imaging photodetector. Adv. Mater. 2020, 32, 1907257.

[154]

Cao, Y.; Zhu, X. Y.; Chen, H. B.; Zhang, X. T.; Zhou, J.; Hu, Z. Y.; Pang, J. B. Towards high efficiency inverted Sb2Se3 thin film solar cells. Sol. Energy Mater. Sol. Cells 2019, 200, 109945.

[155]

Zhou, J.; Meng, D.; Yang, T. H.; Zhang, X. T.; Tang, Z. Q.; Cao, Y.; Ni, J.; Zhang, J. J.; Hu, Z. Y.; Pang, J. B. Enhanced charge carrier transport via efficient grain conduction mode for Sb2Se3 solar cell applications. Appl. Surf. Sci. 2022, 591, 153169.

[156]

Cao, Y.; Zhu, X. Y.; Jiang, J. H.; Liu, C. Y.; Zhou, J.; Ni, J.; Zhang, J. J.; Pang, J. B. Rotational design of charge carrier transport layers for optimal antimony trisulfide solar cells and its integration in tandem devices. Sol. Energy Mater. Sol. Cells 2020, 206, 110279.

[157]

Zhou, J.; Chen, H. B.; Zhang, X. T.; Chi, K. L.; Cai, Y. M.; Cao, Y.; Pang, J. B. Substrate dependence on (Sb4Se6)n ribbon orientations of antimony selenide thin films: Morphology, carrier transport and photovoltaic performance. J. Alloys Compd. 2021, 862, 158703.

[158]

Cao, Y.; Zhu, X. Y.; Tong, X. Y.; Zhou, J.; Ni, J.; Zhang, J. J.; Pang, J. B. Ultrathin microcrystalline hydrogenated Si/Ge alloyed tandem solar cells towards full solar spectrum conversion. Front. Chem. Sci. Eng. 2020, 14, 997–1005.

[159]

He, Z. C.; Liu, Y.; Lin, S. P.; Shi, S. H.; Sun, S. L.; Pang, J. B.; Zhou, Z. Q.; Sun, Y.; Liu, W. Energy band alignment in molybdenum oxide/Cu(In, Ga)Se2 interface for high-efficiency ultrathin Cu(In, Ga)Se2 solar cells from low-temperature growth. ACS Appl. Energy Mater. 2020, 3, 3408–3414.

[160]

Pang, J. B.; Cai, Y. A.; He, Q.; Wang, H.; Jiang, W. L.; He, J. J.; Yu, T.; Liu, W.; Zhang, Y.; Sun, Y. Preparation and characteristics of MoSe2 interlayer in bifacial Cu(In, Ga)Se2 solar cells. Phys. Procedia 2012, 32, 372–378.

[161]

Liu, W.; He, J. J.; Li, Z. G.; Jiang, W. L.; Pang, J. B.; Zhang, Y.; Sun, Y. Effect of Na on lower open circuit voltage of flexible CIGS thin-film solar cells prepared by the low-temperature process. Phys. Scr. 2012, 85, 055806.

[162]

Zhang, S. C.; Li, S. Y.; Lu, Y. Y. Designing safer lithium-based batteries with nonflammable electrolytes: A review. eScience 2021, 1, 163–177.

[163]

Guo, Y.; Wu, S. C.; He, Y. B.; Kang, F. Y.; Chen, L. Q.; Li, H.; Yang, Q. H. Solid-state lithium batteries: Safety and prospects. eScience 2022, 2, 138–163.

[164]

Le, T. S. D.; An, J. N.; Huang, Y.; Vo, Q.; Boonruangkan, J.; Tran, T.; Kim, S. W.; Sun, G. Z.; Kim, Y. J. Ultrasensitive anti-interference voice recognition by bio-inspired skin-attachable self-cleaning acoustic sensors. ACS Nano 2019, 13, 13293–13303.

[165]

Gu, Y.; Wang, X. W.; Gu, W.; Wu, Y. J.; Li, T.; Zhang, T. Flexible electronic eardrum. Nano Res. 2017, 10, 2683–2691.

[166]

Gou, G. Y.; Li, X. S.; Jian, J. M.; Tian, H.; Wu, F.; Ren, J.; Geng, X. S.; Xu, J. D.; Qiao, Y. C.; Yan, Z. Y. et al. Two-stage amplification of an ultrasensitive MXene-based intelligent artificial eardrum. Sci. Adv. 2022, 8, eabn2156.

[167]

Cai, Y. C.; Shen, J.; Ge, G.; Zhang, Y. Z.; Jin, W. Q.; Huang, W.; Shao, J. J.; Yang, J.; Dong, X. C. Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 2018, 12, 56–62.

[168]

Wang, K.; Lou, Z.; Wang, L. L.; Zhao, L. J.; Zhao, S. F.; Wang, D. Y.; Han, W.; Jiang, K.; Shen, G. Z. Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano 2019, 13, 9139–9147.

[169]

Jin, Y. K.; Wen, B.; Gu, Z. X.; Jiang, X. T.; Shu, X. L.; Zeng, Z. P.; Zhang, Y. P.; Guo, Z. N.; Chen, Y.; Zheng, T. T. et al. Deep-learning-enabled MXene-based artificial throat: Toward sound detection and speech recognition. Adv. Mater. Technol. 2020, 5, 2000262.

[170]

Li, G. J.; Cheng, Z. X.; Xiang, Q.; Yan, L. M.; Wang, X. H.; Xu, J. Q. Bimetal PdAu decorated SnO2 nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone. Sens. Actuators B:Chem. 2019, 283, 590–601.

[171]

Drmosh, Q. A.; Alade, I. O.; Qamar, M.; Akbar, S. Zinc oxide-based acetone gas sensors for breath analysis: A review. Chem. Asian J. 2021, 16, 1519–1538.

[172]

Xing, X. X.; Du, L. L.; Feng, D. L.; Wang, C.; Yao, M. S.; Huang, X. H.; Zhang, S. X.; Yang, D. C. Individual gas sensor detecting dual exhaled biomarkers via a temperature modulated n/p semiconducting transition. J. Mater. Chem. A 2020, 8, 26004–26012.

[173]

Wang, Z. N.; Wang, C. J. Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements. J. Breath Res. 2013, 7, 037109.

[174]

Sharma, B.; Sharma, A.; Myung, J. H. Highly selective detection of acetone by TiO2−SnO2 heterostructures for environmental biomarkers of diabetes. Sens. Actuators B:Chem. 2021, 349, 130733.

[175]

Yuan, K. P.; Wang, C. Y.; Zhu, L. Y.; Cao, Q.; Yang, J. H.; Li, X. X.; Huang, W.; Wang, Y. Y.; Lu, H. L.; Zhang, D. W. Fabrication of a micro-electromechanical system-based acetone gas sensor using CeO2 nanodot-decorated WO3 nanowires. ACS Appl. Mater. Interfaces 2020, 12, 14095–14104.

[176]

Liu, M.; Ji, J.; Song, P.; Liu, M.; Wang, Q. α-Fe2O3 nanocubes/Ti3C2Tx MXene composites for improvement of acetone sensing performance at room temperature. Sens. Actuators B: Chem. 2021, 349, 130782.

[177]

Kumar, A.; Daw, P.; Milstein, D. Homogeneous catalysis for sustainable energy: Hydrogen and methanol economies, fuels from biomass, and related topics. Chem. Rev. 2022, 122, 385–441.

[178]

Gautam, P.; Neha; Upadhyay, S. N.; Dubey, S. K. Bio-methanol as a renewable fuel from waste biomass: Current trends and future perspective. Fuel 2020, 273, 117783.

[179]

Feng, C. H.; Jiang, Z. W.; Chen, B.; Cheng, P. F.; Wang, Y. L.; Huang, C. Z. Aluminum-doped NiO nanofibers as chemical sensors for selective and sensitive methanol detection. Anal. Methods 2019, 11, 575–581.

[180]

Zhang, Y.; Pan, W. J.; Dong, G. K.; Zhang, D. Z. A high-performance room temperature methanol gas sensor based on alpha-iron oxide/polyaniline/PbS quantum dots nanofilm. J. Mater. Sci.: Mater. Electron. 2019, 30, 17907–17915.

[181]

Van Den Broek, J.; Abegg, S.; Pratsinis, S. E.; Güntner, A. T. Highly selective detection of methanol over ethanol by a handheld gas sensor. Nat. Commun. 2019, 10, 4220.

[182]

Young, S. J.; Chu, Y. L. Platinum nanoparticle-decorated ZnO nanorods improved the performance of methanol gas sensor. J. Electrochem. Soc. 2020, 167, 147508.

[183]

Sinha, M.; Neogi, S.; Mahapatra, R.; Krishnamurthy, S.; Ghosh, R. Material dependent and temperature driven adsorption switching (p- to n-type) using CNT/ZnO composite-based chemiresistive methanol gas sensor. Sens. Actuators B:Chem. 2021, 336, 129729.

[184]

Liu, M.; Wang, Z. Y.; Song, P.; Yang, Z. X.; Wang, Q. In2O3 nanocubes/Ti3C2Tx MXene composites for enhanced methanol gas sensing properties at room temperature. Ceram. Int. 2021, 47, 23028–23037.

[185]

Li, H. J.; Zhang, N.; Zhao, X. L.; Xu, Z. Q.; Zhang, Z. Y.; Wang, Y. Modulation of TEA and methanol gas sensing by ion-exchange based on a sacrificial template 3D diamond-shaped MOF. Sens. Actuators B:Chem. 2020, 315, 128136.

[186]

Dasari, S. G.; Nagaraju, P.; Yelsani, V.; Tirumala, S.; Reddy, M. V. R. Nanostructured indium oxide thin films as a room temperature toluene sensor. ACS Omega 2021, 6, 17442–17454.

[187]

Ahmed, A. M.; Mehaney, A.; Elsayed, H. A. Detection of toluene traces in exhaled breath by using a 1D PC as a biomarker for lung cancer diagnosis. Eur. Phys. J. Plus 2021, 136, 626.

[188]

Gregis, G.; Sanchez, J. B.; Bezverkhyy, I.; Weber, G.; Berger, F.; Fierro, V.; Bellat, J. P.; Celzard, A. Detection and quantification of lung cancer biomarkers by a micro-analytical device using a single metal oxide-based gas sensor. Sens. Actuators B:Chem. 2018, 255, 391–400.

[189]

Guo, W. Z.; Surya, S. G.; Babar, V.; Ming, F. W.; Sharma, S.; Alshareef, H. N.; Schwingenschlögl, U.; Salama, K. N. Selective toluene detection with Mo2CTx MXene at room temperature. ACS Appl. Mater. Interfaces 2020, 12, 57218–57227.

[190]

Iqbal, A.; Sambyal, P.; Kwon, J.; Han, M. K.; Hong, J.; Kim, S. J.; Kim, M. K.; Gogotsi, Y.; Koo, C. M. Enhanced absorption of electromagnetic waves in Ti3C2Tx MXene films with segregated polymer inclusions. Compos. Sci. Technol. 2021, 213, 108878.

[191]

Ma, H.; Xu, Y. M.; Rong, Z. M.; Cheng, X. L.; Gao, S.; Zhang, X. F.; Zhao, H.; Huo, L. H. Highly toluene sensing performance based on monodispersed Cr2O3 porous microspheres. Sens. Actuators B:Chem. 2012, 174, 325–331.

[192]

Lee, E.; VahidMohammadi, A.; Prorok, B. C.; Yoon, Y. S.; Beidaghi, M.; Kim, D. J. Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl. Mater. Interfaces 2017, 9, 37184–37190.

[193]

Kim, S. J.; Koh, H. J.; Ren, C. E.; Kwon, O.; Maleski, K.; Cho, S. Y.; Anasori, B.; Kim, C. K.; Choi, Y. K.; Kim, J. et al. Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 2018, 12, 986–993.

[194]

Wu, M.; He, M.; Hu, Q. K.; Wu, Q. H.; Sun, G.; Xie, L. L.; Zhang, Z. Y.; Zhu, Z. G.; Zhou, A. G. Ti3C2 MXene-based sensors with high selectivity for NH3 detection at room temperature. ACS Sens. 2019, 4, 2763–2770.

[195]

Yuan, W. J.; Yang, K.; Peng, H. F.; Li, F.; Yin, F. X. A flexible VOCs sensor based on a 3D Mxene framework with a high sensing performance. J. Mater. Chem. A 2018, 6, 18116–18124.

[196]

Zhao, Q. N.; Zhang, Y. J.; Duan, Z. H.; Wang, S.; Liu, C.; Jiang, Y. D.; Tai, H. L. A review on Ti3C2Tx-based nanomaterials: Synthesis and applications in gas and humidity sensors. Rare Met. 2020, 40, 1459–1476.

[197]

Pazniak, H.; Varezhnikov, A. S.; Kolosov, D. A.; Plugin, I. A.; Vito, A. D.; Glukhova, O. E.; Sheverdyaeva, P. M.; Spasova, M.; Kaikov, I.; Kolesnikov, E. A. et al. 2D molybdenum carbide MXenes for enhanced selective detection of humidity in air. Adv. Mater. 2021, 33, 2104878.

[198]

Bajaj, K. L.; Kaur, G. Colorimetric determination of capsaicin in capsicum fruits with the Folin−Ciocalteu reagent. Microchim. Acta 1979, 71, 81–86.

[199]

Perucka, I.; Oleszek, W. Extraction and determination of capsaicinoids in fruit of hot pepper Capsicum annuum L. by spectrophotometry and high-performance liquid chromatography. Food Chem. 2000, 71, 287–291.

[200]

Hamada, N.; Hashi, Y.; Yamaki, S.; Guo, Y. L.; Zhang, L.; Li, H. F.; Lin, J. M. Construction of on-line supercritical fluid extraction with reverse phase liquid chromatography-tandem mass spectrometry for the determination of capsaicin. Chin. Chem. Lett. 2019, 30, 99–102.

[201]

Gu, Q. H.; Chen, X. G.; Lu, C. Q.; Ye, C. Z.; Li, W. Z.; Chu, J. Y.; Zhang, W. G.; Wang, Z. P.; Xu, B. C. Electrochemical determination of capsaicinoids content in soy sauce and pot-roast meat products by glassy carbon electrode modified with MXene/PDDA-carbon nanotubes/β-cyclodextrin. Food Control 2022, 138, 109022.

[202]

Wang, G. X.; Sun, J. F.; Yao, Y.; An, X. S.; Zhang, H.; Chu, G. L.; Jiang, S.; Guo, Y. M.; Sun, X.; Liu, Y. Detection of inosine monophosphate (IMP) in meat using double-enzyme sensor. Food Anal. Methods. 2020, 13, 420–432.

[203]

Liu, J. S.; Fan, Y. X.; Chen, G. L.; Liu, Y. Highly sensitive glutamate biosensor based on platinum nanoparticles decorated MXene-Ti3C2Tx for l-glutamate determination in foodstuffs. LWT 2021, 148, 111748.

[204]

Gao, J. W.; Gao, Y. K.; Han, Y. K.; Pang, J. B.; Wang, C.; Wang, Y. H.; Liu, H.; Zhang, Y.; Han, L. Ultrasensitive label-free MiRNA sensing based on a flexible graphene field-effect transistor without functionalization. ACS Appl. Electron. Mater. 2020, 2, 1090–1098.

[205]

Yin, Y.; Pang, J. B.; Wang, J. W.; Lu, X. Y.; Hao, Q.; Naz, E. S. G.; Zhou, X. X.; Ma, L. B.; Schmidt, O. G. Graphene-activated optoplasmonic nanomembrane cavities for photodegradation detection. ACS Appl. Mater. Interfaces 2019, 11, 15891–15897.

[206]

Jiang, J. F.; Zhang, Y.; Wang, A. Z.; Duan, J. Z.; Ji, H.; Pang, J. B.; Sang, Y. H.; Feng, X. J.; Liu, H.; Han, L. Construction of high field-effect mobility multilayer MoS2 field-effect transistors with excellent stability through interface engineering. ACS Appl. Electron. Mater. 2020, 2, 2132–2140.

[207]

Jiang, J. F.; Meng, F. Q.; Cheng, Q. L.; Wang, A. Z.; Chen, Y. K.; Qiao, J.; Pang, J. B.; Xu, W. D.; Ji, H.; Zhang, Y. et al. Low lattice mismatch inse-se vertical van der Waals heterostructure for high-performance transistors via strong fermi-level depinning. Small Methods 2020, 4, 2000238.

[208]

Sun, B. J.; Pang, J. B.; Cheng, Q. L.; Zhang, S.; Li, Y. F.; Zhang, C. C.; Sun, D. H.; Ibarlucea, B.; Li, Y.; Chen, D. et al. Synthesis of wafer-scale graphene with chemical vapor deposition for electronic device applications. Adv. Mater. Technol. 2021, 6, 2000744.

[209]
Lei, D. D.; Liu, N. S.; Su, T. Y.; Zhang, Q. X.; Wang, L. X.; Ren, Z. Q.; Gao, Y. H. Roles of MXene in pressure sensing: Preparation, composite structure design, and mechanism. Adv. Mater., in press, https://doi.org/10.1002/adma.202110608.
[210]

Fu, X. Y.; Wang, L. L.; Zhao, L. J.; Yuan, Z. Y.; Zhang, Y. P.; Wang, D. Y.; Wang, D. P.; Li, J. Z.; Li, D. D.; Shulga, V. et al. Controlled assembly of MXene nanosheets as an electrode and active layer for high-performance electronic skin. Adv. Funct. Mater. 2021, 31, 2010533.

[211]

Zhao, L. J.; Wang, L. L.; Zheng, Y. Q.; Zhao, S. F.; Wei, W.; Zhang, D. W.; Fu, X. Y.; Jiang, K.; Shen, G. Z.; Han, W. Highly-stable polymer-crosslinked 2D MXene-based flexible biocompatible electronic skins for in vivo biomonitoring. Nano Energy 2021, 84, 105921.

[212]

Wang, D. Y.; Wang, L. L.; Lou, Z.; Zheng, Y. Q.; Wang, K.; Zhao, L. J.; Han, W.; Jiang, K.; Shen, G. Z. Biomimetic, biocompatible and robust silk Fibroin-MXene film with stable 3D cross-link structure for flexible pressure sensors. Nano Energy 2020, 78, 105252.

[213]

Wang, L. L.; Wang, D. P.; Wang, K.; Jiang, K.; Shen, G. Z. Biocompatible MXene/chitosan-based flexible bimodal devices for real-time pulse and respiratory rate monitoring. ACS Materials Lett. 2021, 3, 921–929.

[214]

Ryan, K. R.; Down, M. P.; Hurst, N. J.; Keefe, E. M.; Banks, C. E. Additive manufacturing (3D printing) of electrically conductive polymers and polymer nanocomposites and their applications. eScience 2022, 2, 365–381.

[215]

Liu, Q. Q.; Liu, R. T.; He, C. H.; Xia, C. F.; Guo, W.; Xu, Z. L.; Xia, B. Y. Advanced polymer-based electrolytes in zinc-air batteries. eScience 2022, 2, 453–466.

[216]

Zhao, S. F.; Ran, W. H.; Wang, L. L.; Shen, G. Z. Interlocked MXene/rGO aerogel with excellent mechanical stability for a health-monitoring device. J. Semicond. 2022, 43, 082601.

[217]

Yang, Z. J.; Lv, S. Y.; Zhang, Y. Y.; Wang, J.; Jiang, L.; Jia, X. T.; Wang, C. G.; Yan, X.; Sun, P.; Duan, Y. et al. Self-assembly 3D porous crumpled MXene spheres as efficient gas and pressure sensing material for transient all-MXene sensors. Nano-Micro Lett. 2022, 14, 56.

[218]

Guo, Y.; Zhong, M. J.; Fang, Z. W.; Wan, P. B.; Yu, G. H. A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett. 2019, 19, 1143–1150.

[219]

Lee, S.; Kim, E. H.; Yu, S.; Kim, H.; Park, C.; Lee, S. W.; Han, H.; Jin, W.; Lee, K.; Lee, C. E. et al. Polymer-laminated Ti3C2TX MXene electrodes for transparent and flexible field-driven electronics. ACS Nano 2021, 15, 8940–8952.

[220]

Cai, Y. C.; Shen, J.; Yang, C. W.; Wan, Y.; Tang, H. L.; Aljarb, A. A.; Chen, C. L.; Fu, J. H.; Wei, X.; Huang, K. W. et al. Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Sci. Adv. 2020, 6, eabb5367.

[221]

Leung, S. F.; Ho, K. T.; Kung, P. K.; Hsiao, V. K. S.; Alshareef, H. N.; Wang, Z. L.; He, J. H. A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity. Adv. Mater. 2018, 30, 1704611.

[222]

Liana, D. D.; Raguse, B.; Gooding, J. J.; Chow, E. An integrated paper-based readout system and piezoresistive pressure sensor for measuring bandage compression. Adv. Mater. Technol. 2016, 1, 1600143.

[223]

Zhou, Z. Q.; Li, Y.; Cheng, J.; Chen, S. Y.; Hu, R.; Yan, X. W.; Liao, X. Q.; Xu, C. M.; Yu, J. S.; Li, L. Supersensitive all-fabric pressure sensors using printed textile electrode arrays for human motion monitoring and human-machine interaction. J. Mater. Chem. C 2018, 6, 13120–13127.

[224]

Zhu, Y. Z.; Hartel, M. C.; Yu, N.; Garrido, P. R.; Kim, S.; Lee, J.; Bandaru, P.; Guan, S. H.; Lin, H. S.; Emaminejad, S. et al. Epidermis-inspired wearable piezoresistive pressure sensors using reduced graphene oxide self-wrapped copper nanowire networks. Small Methods 2022, 6, 2100900.

[225]

Pu, L.; Ma, H. J.; Dong, J. C.; Zhang, C.; Lai, F. L.; He, G. J.; Ma, P. M.; Dong, W. F.; Huang, Y. P.; Liu, T. X. Xylem-inspired polyimide/MXene aerogels with radial lamellar architectures for highly sensitive strain detection and efficient solar steam generation. Nano Lett. 2022, 22, 4560–4568.

[226]

Kim, J.; Jang, M.; Jeong, G.; Yu, S.; Park, J.; Lee, Y.; Cho, S.; Yeom, J.; Lee, Y.; Choe, A. et al. MXene-enhanced β-phase crystallization in ferroelectric porous composites for highly-sensitive dynamic force sensors. Nano Energy 2021, 89, 106409.

[227]

Zhang, Z. C.; Yan, Q. Y.; Liu, Z. R.; Zhao, X. Y.; Wang, Z.; Sun, J.; Wang, Z. L.; Wang, R. R.; Li, L. L. Flexible MXene composed triboelectric nanogenerator via facile vacuum-assistant filtration method for self-powered biomechanical sensing. Nano Energy 2021, 88, 106257.

[228]

Feig, V. R.; Tran, H.; Bao, Z. N. Biodegradable polymeric materials in degradable electronic devices. ACS Cent. Sci. 2018, 4, 337–348.

[229]

Chang, J. K.; Chang, H. P.; Guo, Q. L.; Koo, J.; Wu, C. I.; Rogers, J. A. Biodegradable electronic systems in 3D, heterogeneously integrated formats. Adv. Mater. 2018, 30, 1704955.

[230]

Li, W. H.; Liu, Q.; Zhang, Y.; Li, C. A.; He, Z. F.; Choy, W. C. H.; Low, P. J.; Sonar, P.; Kyaw, A. K. K. Biodegradable materials and green processing for green electronics. Adv. Mater. 2020, 32, 2001591.

[231]

Shin, J.; Yan, Y.; Bai, W. B.; Xue, Y. G.; Gamble, P.; Tian, L. M.; Kandela, I.; Haney, C. R.; Spees, W.; Lee, Y. et al. Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes. Nat. Biomed. Eng. 2019, 3, 37–46.

[232]

Choi, Y. S.; Hsueh, Y. Y.; Koo, J.; Yang, Q. S.; Avila, R.; Hu, B. W.; Xie, Z. Q.; Lee, G.; Ning, Z.; Liu, C. et al. Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration. Nat. Commun. 2020, 11, 5990.

[233]

Shin, J.; Liu, Z. H.; Bai, W. B.; Liu, Y. H.; Yan, Y.; Xue, Y. G.; Kandela, I.; Pezhouh, M.; MacEwan, M. R.; Huang, Y. G. et al. Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature. Sci. Adv. 2019, 5, eaaw1899.

[234]

Yang, Q. S.; Liu, T. L.; Xue, Y. G.; Wang, H. L.; Xu, Y. M.; Emon, B.; Wu, M. Z.; Rountree, C.; Wei, T.; Kandela, I. et al. Ecoresorbable and bioresorbable microelectromechanical systems. Nat. Electron. 2022, 5, 526–538.

[235]

Chen, X.; Park, Y. J.; Kang, M.; Kang, S. K.; Koo, J.; Shinde, S. M.; Shin, J.; Jeon, S.; Park, G.; Yan, Y. et al. CVD-grown monolayer MoS2 in bioabsorbable electronics and biosensors. Nat. Commun. 2018, 9, 1690.

[236]

Han, W. B.; Lee, J. H.; Shin, J. W.; Hwang, S. W. Advanced materials and systems for biodegradable, transient electronics. Adv. Mater. 2020, 32, 2002211.

[237]

Li, C. M.; Guo, C. C.; Fitzpatrick, V.; Ibrahim, A.; Zwierstra, M. J.; Hanna, P.; Lechtig, A.; Nazarian, A.; Lin, S. J.; Kaplan, D. L. Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 2020, 5, 61–81.

[238]

Wang, D. P.; Zhao, S. F.; Yin, R. Y.; Li, L. L.; Lou, Z.; Shen, G. Z. Recent advanced applications of ion-gel in ionic-gated transistor. npj Flexible Electron. 2021, 5, 13.

[239]

Wang, L. L.; Wang, K.; Lou, Z.; Jiang, K.; Shen, G. Z. Plant-based modular building blocks for “green” electronic skins. Adv. Funct. Mater. 2018, 28, 1804510.

[240]

Won, S. M.; Koo, J.; Crawford, K. E.; Mickle, A. D.; Xue, Y. G.; Min, S.; McIlvried, L. A.; Yan, Y.; Kim, S. B.; Lee, S. M. et al. Natural wax for transient electronics. Adv. Funct. Mater. 2018, 28, 1801819.

[241]

Cui, Y. J.; Zhang, F.; Chen, G.; Yao, L.; Zhang, N.; Liu, Z. Y.; Li, Q. S.; Zhang, F. L.; Cui, Z. Q.; Zhang, K. Q. et al. A stretchable and transparent electrode based on PEGylated silk fibroin for in vivo dual-modal neural-vascular activity probing. Adv. Mater. 2021, 33, 2100221.

[242]

Chen, G.; Matsuhisa, N.; Liu, Z. Y.; Qi, D. P.; Cai, P. Q.; Jiang, Y.; Wan, C. J.; Cui, Y. J.; Leow, W. R.; Liu, Z. J. et al. Plasticizing silk protein for on-skin stretchable electrodes. Adv. Mater. 2018, 30, 1800129.

[243]
Zarei, M.; Lee, G.; Lee, S. G.; Cho, K. Advances in biodegradable electronic skin: Material progress and recent applications in sensing, robotics, and human-machine interfaces. Adv. Mater., in press, https://doi.org/10.1002/adma.202203193.
[244]

Matsuhisa, N.; Chen, X. D.; Bao, Z. N.; Someya, T. Materials and structural designs of stretchable conductors. Chem. Soc. Rev. 2019, 48, 2946–2966.

[245]

Wang, H. L.; Wang, Y.; Ni, Z. J.; Turetta, N.; Gali, S. M.; Peng, H. J.; Yao, Y. F.; Chen, Y. S.; Janica, I.; Beljonne, D. et al. 2D MXene-molecular hybrid additive for high-performance ambipolar polymer field-effect transistors and logic gates. Adv. Mater. 2021, 33, 2008215.

[246]

Liu, J.; McKeon, L.; Garcia, J.; Pinilla, S.; Barwich, S.; Möbius, M.; Stamenov, P.; Coleman, J. N.; Nicolosi, V. Additive manufacturing of Ti3C2-MXene-functionalized conductive polymer hydrogels for electromagnetic-interference shielding. Adv. Mater. 2022, 34, 2106253.

[247]

Han, Q. F.; Pang, J. B.; Li, Y. F.; Sun, B. J.; Ibarlucea, B.; Liu, X. Y.; Gemming, T.; Cheng, Q. L.; Zhang, S.; Liu, H. et al. Graphene biodevices for early disease diagnosis based on biomarker detection. ACS Sens. 2021, 6, 3841–3881.

[248]

Zhang, S.; Pang, J. B.; Li, Y. F.; Ibarlucea, B.; Liu, Y.; Wang, T.; Liu, X. Y.; Peng, S. A.; Gemming, T.; Cheng, Q. L. et al. An effective formaldehyde gas sensor based on oxygen-rich three-dimensional graphene. Nanotechnology 2022, 33, 185702.

[249]

Ibrahim, I.; Kalbacova, J.; Engemaier, V.; Pang, J. B.; Rodriguez, R. D.; Grimm, D.; Gemming, T.; Zahn, D. R. T.; Schmidt, O. G.; Eckert, J. et al. Confirming the dual role of etchants during the enrichment of semiconducting single wall carbon nanotubes by chemical vapor deposition. Chem. Mater. 2015, 27, 5964–5973.

[250]

Pang, J. B.; Bachmatiuk, A.; Fu, L.; Mendes, R. G.; Libera, M.; Placha, D.; Martynková, G. S.; Trzebicka, B.; Gemming, T.; Eckert, J. et al. Direct synthesis of graphene from adsorbed organic solvent molecules over copper. RSC Adv. 2015, 5, 60884–60891.

[251]

Pang, J. B.; Bachmatiuk, A.; Ibrahim, I.; Fu, L.; Placha, D.; Martynkova, G. S.; Trzebicka, B.; Gemming, T.; Eckert, J.; Rümmeli, M. H. CVD growth of 1D and 2D sp2 carbon nanomaterials. J. Mater. Sci. 2016, 51, 640–667.

[252]

Martynková, G. S.; Becerik, F.; Plachá, D.; Pang, J. B.; Akbulut, H.; Bachmatiuk, A.; Rummeli, M. H. Effect of milling and annealing on carbon-silver system. J. Nanosci. Nanotechnol. 2019, 19, 2770–2774.

[253]

Guo, Z. J.; Sun, C. H.; Yang, H. R.; Gao, H. Y.; Liang, N.; Wang, J.; Hu, S.; Ren, N.; Pang, J. B.; Wang, J. G. et al. Regulation of neural differentiation of ADMSCs using graphene-mediated wireless-localized electrical signals driven by electromagnetic induction. Adv. Sci. 2022, 9, 2104424.

[254]

Sengwa, R. J.; Dhatarwal, P.; Choudhary, S. A comparative study of different metal oxide nanoparticles dispersed PVDF/PEO blend matrix-based advanced multifunctional nanodielectrics for flexible electronic devices. Mater. Today Commun. 2020, 25, 101380.

[255]

Mishra, S.; Sahoo, R.; Unnikrishnan, L.; Ramadoss, A.; Mohanty, S.; Nayak, S. K. Enhanced structural and dielectric behaviour of PVDF-PLA binary polymeric blend system. Mater. Today Commun. 2021, 26, 101958.

[256]

Zhang, H. Y.; Yin, F. F.; Shang, S.; Li, Y.; Qiu, Z. C.; Lin, Q. H.; Wei, X.; Li, S. L.; Kim, N. Y.; Shen, G. Z. A high-performance, biocompatible, and degradable piezoresistive-triboelectric hybrid device for cross-scale human activities monitoring and self-powered smart home system. Nano Energy 2022, 102, 107687.

[257]

Wang, L. L.; Lou, Z.; Wang, K.; Zhao, S. F.; Yu, P. C.; Wei, W.; Wang, D. Y.; Han, W.; Jiang, K.; Shen, G. Z. Biocompatible and biodegradable functional polysaccharides for flexible humidity sensors. Research (Wash. D C) 2020, 2020, 8716847.

[258]

Han, S. W.; Chen, D.; Wang, J.; Liu, Z.; Liu, F.; Chen, Y. K.; Ji, Y. C.; Pang, J. B.; Liu, H.; Wang, J. G. Assembling Sn3O4 nanostructures on a hydrophobic PVDF film through metal-F coordination to construct a piezotronic effect-enhanced Sn3O4/PVDF hybrid photocatalyst. Nano Energy 2020, 72, 104688.

[259]

Cheng, Y.; Xu, Y.; Qian, Y.; Chen, X.; Ouyang, Y. M.; Yuan, W. E. 3D structured self-powered PVDF/PCL scaffolds for peripheral nerve regeneration. Nano Energy 2020, 69, 104411.

[260]

Chen, J. L.; Rong, C. Y.; Lin, T. T.; Chen, Y. H.; Wu, J. L.; You, J. C.; Wang, H. T.; Li, Y. J. Stable co-continuous PLA/PBAT blends compatibilized by interfacial stereocomplex crystallites: Toward full biodegradable polymer blends with simultaneously enhanced mechanical properties and crystallization rates. Macromolecules 2021, 54, 2852–2861.

[261]

Wang, L. L.; Lou, Z.; Jiang, K.; Shen, G. Z. Bio-multifunctional smart wearable sensors for medical devices. Adv. Intell. Syst. 2019, 1, 1900040.

[262]

Luo, Y. F.; Wang, M.; Wan, C. J.; Cai, P. Q.; Loh, X. J.; Chen, X. D. Devising materials manufacturing toward lab-to-fab translation of flexible electronics. Adv. Mater. 2020, 32, 2001903.

[263]

He, X.; Ni, Y. X.; Li, Y. X.; Sun, H. H.; Lu, Y.; Li, H. X.; Yan, Z. H.; Zhang, K.; Chen, J. An MXene-based metal anode with stepped sodiophilic gradient structure enables a large current density for rechargeable Na-O2 batteries. Adv. Mater. 2022, 34, 2106565.

[264]

Tang, J. Y.; Peng, X. Y.; Lin, T. E.; Huang, X.; Luo, B.; Wang, L. Z. Confining ultrafine tin monophosphide in Ti3C2Tx interlayers for rapid and stable sodium ion storage. eScience 2021, 1, 203–211.

[265]

He, X.; Jin, S.; Miao, L. C.; Cai, Y. C.; Hou, Y. P.; Li, H. X.; Zhang, K.; Yan, Z. H.; Chen, J. A 3D hydroxylated MXene/carbon nanotubes composite as a scaffold for dendrite-free sodium-metal electrodes. Angew. Chem., Int. Ed. 2020, 59, 16705–16711.

[266]

Yu, Y.; Zhang, Q.; Chen, J.; Sun, S. G. Virtual special issue of recent research advances in China: Batteries and energy storage. Energy Fuels 2021, 35, 10945–10948.

[267]

Wang, W. X.; Xiong, F. Y.; Zhu, S. H.; Chen, J. H.; Xie, J.; An, Q. Y. Defect engineering in molybdenum-based electrode materials for energy storage. eScience 2022, 2, 278–294.

[268]

Shuck, C. E.; Gogotsi, Y. Taking MXenes from the lab to commercial products. Chem. Eng. J. 2020, 401, 125786.

[269]

Feng, X.; Shi, X. Y.; Ning, J.; Wang, D.; Zhang, J. C.; Hao, Y.; Wu, Z. S. Recent advances in micro-supercapacitors for AC line-filtering performance: From fundamental models to emerging applications. eScience 2021, 1, 124–140.

[270]

Lethien, C.; Le Bideau, J.; Brousse, T. Challenges and prospects of 3D micro-supercapacitors for powering the internet of things. Energy Environ. Sci. 2019, 12, 96–115.

[271]

Robert, K.; Douard, C.; Demortière, A.; Blanchard, F.; Roussel, P.; Brousse, T.; Lethien, C. On chip interdigitated micro-supercapacitors based on sputtered bifunctional vanadium nitride thin films with finely tuned inter- and intracolumnar porosities. Adv. Mater. Technol. 2018, 3, 1800036.

[272]
Boretti, A.; Castelletto, S. MXenes in polymer electrolyte membrane hydrogen fuel and electrolyzer cells. Ceram. Int., in press, https://doi.org/10.1016/j.ceramint.2022.08.345.
[273]

Zhang, T.; Zhang, L.; Hou, Y. L. MXenes: Synthesis strategies and lithium-sulfur battery applications. eScience 2022, 2, 164–182.

[274]

Zhang, C. Y.; Zhang, C. Q.; Pan, J. L.; Sun, G. W.; Shi, Z. D.; Li, C. H.; Chang, X. Q.; Sun, G. Z.; Zhou, J. Y.; Cabot, A. Surface strain-enhanced MoS2 as a high-performance cathode catalyst for lithium-sulfur batteries. eScience 2022, 2, 405–415.

[275]

Ye, S. F.; Wang, L. F.; Liu, F. F.; Shi, P. C.; Yu, Y. Integration of homogeneous and heterogeneous nucleation growth via 3D alloy framework for stable Na/K metal anode. eScience 2021, 1, 75–82.

[276]

Peng, M. K.; Wang, L.; Li, L. B.; Peng, Z. Y.; Tang, X. N.; Hu, T.; Yuan, K.; Chen, Y. W. Molecular crowding agents engineered to make bioinspired electrolytes for high-voltage aqueous supercapacitors. eScience 2021, 1, 83–90.

[277]

Li, X.; Zhao, R. X.; Fu, Y. Z.; Manthiram, A. Nitrate additives for lithium batteries: Mechanisms, applications, and prospects. eScience 2021, 1, 108–123.

[278]

Cheng, W. X.; Fu, J. M.; Hu, H. B.; Ho, D. Interlayer structure engineering of MXene-based capacitor-type electrode for hybrid micro-supercapacitor toward battery-level energy density. Adv. Sci. 2021, 8, 2100775.

[279]

Ouendi, S.; Robert, K.; Stievenard, D.; Brousse, T.; Roussel, P.; Lethien, C. Sputtered tungsten nitride films as pseudocapacitive electrode for on chip micro-supercapacitors. Energy Storage Mater. 2019, 20, 243–252.

[280]

Zhai, Y. J.; Han, P.; Yun, Q. B.; Ge, Y. Y.; Zhang, X.; Chen, Y.; Zhang, H. Phase engineering of metal nanocatalysts for electrochemical CO2 reduction. eScience 2022, 2, 467–485.

[281]

Xiao, X. X. The direct use of enzymatic biofuel cells as functional bioelectronics. eScience 2022, 2, 1–9.

[282]

Sun, Z. Y.; Wen, X.; Wang, L. M.; Ji, D. X.; Qin, X. H.; Yu, J. Y.; Ramakrishna, S. Emerging design principles, materials, and applications for moisture-enabled electric generation. eScience 2022, 2, 32–46.

[283]

Wang, S. L.; Wang, P. Y.; Chen, B. B.; Li, R. J.; Ren, N. Y.; Li, Y. C.; Shi, B.; Huang, Q.; Zhao, Y.; Grätzel, M. et al. Suppressed recombination for monolithic inorganic perovskite/silicon tandem solar cells with an approximate efficiency of 23%. eScience 2022, 2, 339–346.

[284]

Shuck, C. E.; Sarycheva, A.; Anayee, M.; Levitt, A.; Zhu, Y. Z.; Uzun, S.; Balitskiy, V.; Zahorodna, V.; Gogotsi, O.; Gogotsi, Y. Scalable synthesis of Ti3C2Tx MXene. Adv. Eng. Mater. 2020, 22, 1901241.

[285]

Zheng, X. H.; Yao, L.; Qiu, Y. P.; Wang, S. R.; Zhang, K. Core−sheath porous polyaniline nanorods/graphene fiber-shaped supercapacitors with high specific capacitance and rate capability. ACS Appl. Energy Mater. 2019, 2, 4335–4344.

[286]

Huang, L. Z.; Ding, L.; Wang, H. H. MXene-based membranes for separation applications. Small Sci. 2021, 1, 2100013.

[287]

Zhao, Q.; Seredych, M.; Precetti, E.; Shuck, C. E.; Harhay, M.; Pang, R.; Shan, C. X.; Gogotsi, Y. Adsorption of uremic toxins using Ti3C2Tx MXene for dialysate regeneration. ACS Nano 2020, 14, 11787–11798.

[288]

Meng, F. Y.; Seredych, M.; Chen, C.; Gura, V.; Mikhalovsky, S.; Sandeman, S.; Ingavle, G.; Ozulumba, T.; Miao, L.; Anasori, B. et al. MXene sorbents for removal of urea from dialysate: A step toward the wearable artificial kidney. ACS Nano 2018, 12, 10518–10528.

[289]

Sun, J. L.; Chang, Y.; Dong, L.; Zhang, K. K.; Hua, Q. L.; Zang, J. H.; Chen, Q. S.; Shang, Y. Y.; Pan, C. F.; Shan, C. X. MXene enhanced self-powered alternating current electroluminescence devices for patterned flexible displays. Nano Energy 2021, 86, 106077.

[290]

Wang, J. Q.; Liu, L.; Jiao, S. L.; Ma, K. J.; Lv, J.; Yang, J. J. Hierarchical carbon Fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 2020, 30, 2002595.

[291]

Lou, Z.; Wang, L. L.; Shen, G. Z. Recent advances in smart wearable sensing systems. Adv. Mater. Technol. 2018, 3, 1800444.

[292]

Wang, L. L.; Jiang, K.; Shen, G. Z. Wearable, implantable, and interventional medical devices based on smart electronic skins. Adv. Mater. Technol. 2021, 6, 2100107.

[293]

Chen, D.; Jiang, K.; Huang, T. T.; Shen, G. Z. Recent advances in fiber supercapacitors: Materials, device configurations, and applications. Adv. Mater. 2020, 32, 1901806.

[294]

Jia, R.; Shen, G. Z.; Qu, F. Y.; Chen, D. Flexible on-chip micro-supercapacitors: Efficient power units for wearable electronics. Energy Storage Mater. 2020, 27, 169–186.

[295]

Zhao, K.; Yang, J. H.; Zhong, M. Z.; Gao, Q.; Wang, Y.; Wang, X. T.; Shen, W. F.; Hu, C. G.; Wang, K. Y.; Shen, G. Z. et al. Direct polarimetric image sensor and wide spectral response based on quasi-1D Sb2S3 nanowire. Adv. Funct. Mater. 2021, 31, 2006601.

[296]

Fang, J. Z.; Zhou, Z. Q.; Xiao, M. Q.; Lou, Z.; Wei, Z. M.; Shen, G. Z. Recent advances in low-dimensional semiconductor nanomaterials and their applications in high-performance photodetectors. InfoMat 2020, 2, 291–317.

[297]

Cosson, M.; David, B.; Arzel, L.; Poizot, P.; Rhallabi, A. Modelling of photovoltaic production and electrochemical storage in an autonomous solar drone. eScience 2022, 2, 235–241.

[298]

Zhang, Y. P.; Wang, L. L.; Zhao, L. J.; Wang, K.; Zheng, Y. Q.; Yuan, Z. Y.; Wang, D. Y.; Fu, X. Y.; Shen, G. Z.; Han, W. Flexible self-powered integrated sensing system with 3D periodic ordered black phosphorus@MXene thin-films. Adv. Mater. 2021, 33, 2007890.

[299]

Guo, Z. L.; Gao, L. G.; Xu, Z. H.; Teo, S.; Zhang, C.; Kamata, Y.; Hayase, S.; Ma, T. L. High electrical conductivity 2D MXene serves as additive of perovskite for efficient solar cells. Small 2018, 14, 1802738.

[300]

Cao, W. Z.; Li, Q.; Yu, X. Q.; Li, H. Controlling Li deposition below the interface. eScience 2022, 2, 47–78.

[301]

Sun, C.; Wu, C. P.; Gu, X. X.; Wang, C.; Wang, Q. H. Interface engineering via Ti3C2Tx MXene electrolyte additive toward dendrite-free zinc deposition. Nano-Micro Lett. 2021, 13, 89.

[302]

Chen, D.; Lou, Z.; Jiang, K.; Shen, G. Z. Device configurations and future prospects of flexible/stretchable lithium-ion batteries. Adv. Funct. Mater. 2018, 28, 1805596.

[303]

Huang, C.; Wang, Q. F.; Zhang, D. H.; Shen, G. Z. Coupling N-doping and rich oxygen vacancies in mesoporous ZnMn2O4 nanocages toward advanced aqueous zinc ion batteries. Nano Res. 2022, 15, 8118–8127.

[304]

Shen, G. Z. Recent advances of flexible sensors for biomedical applications. Prog. Nat. Sci. :Mater. Int. 2021, 31, 872–882.

[305]

Yuan, Z. Q.; Shen, G. Z.; Pan, C. F.; Wang, Z. L. Flexible sliding sensor for simultaneous monitoring deformation and displacement on a robotic hand/arm. Nano Energy 2020, 73, 104764.

[306]

Wei, X.; Li, H.; Yue, W. J.; Gao, S.; Chen, Z. X.; Li, Y.; Shen, G. Z. A high-accuracy, real-time, intelligent material perception system with a machine-learning-motivated pressure-sensitive electronic skin. Matter 2022, 5, 1481–1501.

[307]

Yuan, Z. Q.; Du, X. Y.; Niu, H. D.; Li, N. W.; Shen, G. Z.; Li, C. J.; Wang, Z. L. Motion recognition by a liquid filled tubular triboelectric nanogenerator. Nanoscale 2019, 11, 495–503.

[308]

Wang, W. L.; Pang, J. B.; Su, J.; Li, F. J.; Li, Q.; Wang, X. X.; Wang, J. G.; Ibarlucea, B.; Liu, X. Y.; Li, Y. F. et al. Applications of nanogenerators for biomedical engineering and healthcare systems. InfoMat 2022, 4, e12262.

[309]

Lou, Z.; Wang, L. L.; Jiang, K.; Shen, G. Z. Programmable three-dimensional advanced materials based on nanostructures as building blocks for flexible sensors. Nano Today 2019, 26, 176–198.

[310]

Zhang, Y. T.; Poddar, S.; Huang, H.; Gu, L. L.; Zhang, Q. P.; Zhou, Y.; Yan, S.; Zhang, S. F.; Song, Z. T.; Huang, B. L. et al. Three-dimensional perovskite nanowire array-based ultrafast resistive RAM with ultralong data retention. Sci. Adv. 2021, 7, eabg3788.

[311]

Wang, Y. Q.; Wang, W. X.; Zhang, C. W.; Kan, H.; Yue, W. J.; Pang, J. B.; Gao, S.; Li, Y. A digital-analog integrated memristor based on a ZnO NPs/CuO NWs heterostructure for neuromorphic computing. ACS Appl. Electron. Mater. 2022, 4, 3525–3534.

[312]

Guo, Y. J.; Wei, X.; Gao, S.; Yue, W. J.; Li, Y.; Shen, G. Z. Recent advances in carbon material-based multifunctional sensors and their applications in electronic skin systems. Adv. Funct. Mater. 2021, 31, 2104288.

[313]

Cai, G. F.; Ciou, J. H.; Liu, Y. Z.; Jiang, Y.; Lee, P. S. Leaf-inspired multiresponsive MXene-based actuator for programmable smart devices. Sci. Adv. 2019, 5, eaaw7956.

[314]

Qu, X. C.; Liu, Z.; Tan, P. C.; Wang, C.; Liu, Y.; Feng, H. Q.; Luo, D.; Li, Z.; Wang, Z. L. Artificial tactile perception smart finger for material identification based on triboelectric sensing. Sci. Adv. 2022, 8, eabq2521.

[315]

Seo, D. G.; Lee, Y.; Go, G. T.; Pei, M. Y.; Jung, S.; Jeong, Y. H.; Lee, W.; Park, H. L.; Kim, S. W.; Yang, H. et al. Versatile neuromorphic electronics by modulating synaptic decay of single organic synaptic transistor: From artificial neural networks to neuro-prosthetics. Nano Energy 2019, 65, 104035.

[316]

Li, S.; Ma, L.; Zhou, M.; Li, Y. Q.; Xia, Y.; Fan, X.; Cheng, C.; Luo, H. R. New opportunities for emerging 2D materials in bioelectronics and biosensors. Curr. Opin. Biomed. Eng. 2020, 13, 32–41.

[317]

Li, P. J.; Ali, H. P. A.; Cheng, W.; Yang, J. Y.; Tee, B. C. K. Bioinspired prosthetic interfaces. Adv. Mater. Technol. 2020, 5, 1900856.

[318]

Niu, H. S.; Zhang, H. Y.; Yue, W. J.; Gao, S.; Kan, H.; Zhang, C. W.; Zhang, C. C.; Pang, J. B.; Lou, Z.; Wang, L. L. et al. Micro-nano processing of active layers in flexible tactile sensors via template methods: A review. Small 2021, 17, 2100804.

[319]

Xia, G. T.; Huang, Y. N.; Li, F. J.; Wang, L. C.; Pang, J. B.; Li, L. W.; Wang, K. A thermally flexible and multi-site tactile sensor for remote 3D dynamic sensing imaging. Front. Chem. Sci. Eng. 2020, 14, 1039–1051.

[320]

Shi, J. L.; Jie, J. S.; Deng, W.; Luo, G.; Fang, X. C.; Xiao, Y. L.; Zhang, Y. J.; Zhang, X. J.; Zhang, X. H. A fully solution-printed photosynaptic transistor array with ultralow energy consumption for artificial-vision neural networks. Adv. Mater. 2022, 34, 2200380.

[321]

Chang, T. H.; Li, K. R.; Yang, H. T.; Chen, P. Y. Multifunctionality and mechanical actuation of 2D materials for skin-mimicking capabilities. Adv. Mater. 2018, 30, 1802418.

[322]

Berco, D.; Ang, D. S. Recent progress in synaptic devices paving the way toward an artificial cogni-retina for bionic and machine vision. Adv. Intell. Syst. 2019, 1, 1900003.

[323]

Alpala, L. O.; Quiroga-Parra, D. J.; Torres, J. C.; Peluffo-Ordóñez, D. H. Smart factory using virtual reality and online multi-user: Towards a metaverse for experimental frameworks. Appl. Sci. 2022, 12, 6258.

[324]

Zhou, Y. H.; Xiao, X.; Chen, G. R.; Zhao, X.; Chen, J. Self-powered sensing technologies for human Metaverse interfacing. Joule 2022, 6, 1381–1389.

[325]
Tang, F. X.; Chen, X. H.; Zhao, M.; Kato, N. The roadmap of communication and networking in 6G for the metaverse. IEEE Wirel. Commun., in press, https://doi.org/10.1109/MWC.019.2100721.
[326]

Bibri, S. E. The social shaping of the metaverse as an alternative to the imaginaries of data-driven smart Cities: A study in science, technology, and society. Smart Cities 2022, 5, 832–874.

[327]

Yang, Q.; Zhang, F.; Zhang, N. Y.; Zhang, H. Few-layer MXene Ti3C2Tx (T = F, O, or OH) saturable absorber for visible bulk laser. Opt. Mater. Express 2019, 9, 1795–1802.

[328]

Bharathan, G.; Xu, L. Y.; Jiang, X. T.; Zhang, H.; Li, Z. Q.; Chen, F.; Fuerbach, A. MXene and PtSe2 saturable absorbers for all-fibre ultrafast mid-infrared lasers. Opt. Mater. Express 2021, 11, 1898.

[329]

Ma, C. Y.; Huang, W. C.; Wang, Y. Z.; Adams, J.; Wang, Z. H.; Liu, J.; Song, Y. F.; Ge, Y. Q.; Guo, Z. Y.; Hu, L. P. et al. MXene saturable absorber enabled hybrid mode-locking technology: A new routine of advancing femtosecond fiber lasers performance. Nanophotonics 2020, 9, 2451–2458.

[330]

Wu, Q.; Jin, X.; Chen, S.; Jiang, X.; Hu, Y.; Jiang, Q.; Wu, L.; Li, J.; Zheng, Z.; Zhang, M. et al. MXene-based saturable absorber for femtosecond mode-locked fiber lasers. Opt. Express 2019, 27, 10159–10170.

[331]

Hao, Q. Q.; Liu, J. J.; Zhang, Z.; Zhang, B.; Zhang, F.; Yang, J. M.; Liu, J.; Su, L. B.; Zhang, H. Mid-infrared Er: CaF2-SrF2 bulk laser Q-switched by MXene Ti3C2Tx absorber. Appl. Phys. Express 2019, 12, 085506.

[332]

Feng, T. C.; Li, X. H.; Guo, P. L.; Zhang, Y.; Liu, J. S.; Zhang, H. MXene: Two dimensional inorganic compounds, for generation of bound state soliton pulses in nonlinear optical system. Nanophotonics 2020, 9, 2505–2513.

[333]

Wu, Q.; Wang, Y. Z.; Huang, W. C.; Wang, C.; Zheng, Z.; Zhang, M.; Zhang, H. MXene-based high-performance all-optical modulators for actively Q-switched pulse generation. Photonics Res. 2020, 8, 1140–1147.

[334]

Wu, L. M.; Jiang, X. T.; Zhao, J. L.; Liang, W. Y.; Li, Z. J.; Huang, W. C.; Lin, Z. T.; Wang, Y. Z.; Zhang, F.; Lu, S. B. et al. MXene-based nonlinear optical information converter for all-optical modulator and switcher. Laser Photonics Rev. 2018, 12, 1800215.

[335]

Wu, Q.; Chen, S.; Wang, Y. Z.; Wu, L. M.; Jiang, X. T.; Zhang, F.; Jin, X. X.; Jiang, Q. Y.; Zheng, Z.; Li, J. Q. et al. MZI-based all-optical modulator using MXene Ti3C2Tx (T = F, O, or OH) deposited microfiber. Adv. Mater. Technol. 2019, 4, 1800532.

[336]

Song, Y. F.; Chen, Y. X.; Jiang, X. T.; Ge, Y. Q.; Wang, Y. Z.; You, K. X.; Wang, K.; Zheng, J. L.; Ji, J. H.; Zhang, Y. P. et al. Nonlinear few-layer MXene-assisted all-optical wavelength conversion at telecommunication band. Adv. Opt. Mater. 2019, 7, 1801777.

[337]

Jiang, X. T.; Li, W. J.; Hai, T.; Yue, R.; Chen, Z. W.; Lao, C. S.; Ge, Y. Q.; Xie, G. Q.; Wen, Q.; Zhang, H. Inkjet-printed MXene micro-scale devices for integrated broadband ultrafast photonics. npj 2D Mater. Appl. 2019, 3, 34.

[338]

Wang, C.; Xu, J. W.; Wang, Y. Z.; Song, Y. F.; Guo, J.; Huang, W. C.; Ge, Y. Q.; Hu, L. P.; Liu, J.; Zhang, H. MXene (Ti2NTx): Synthesis, characteristics and application as a thermo-optical switcher for all-optical wavelength tuning laser. Sci. China Mater. 2021, 64, 259–265.

[339]

Shi, Z.; Khaledialidusti, R.; Malaki, M.; Zhang, H. MXene-based materials for solar cell applications. Nanomaterials 2021, 11, 3170.

[340]

Zhu, J.; Ha, E. N.; Zhao, G. L.; Zhou, Y.; Huang, D. S.; Yue, G. Z.; Hu, L. S.; Sun, N.; Wang, Y.; Lee, L. Y. S. et al. Recent advance in MXenes: A promising 2D material for catalysis, sensor and chemical adsorption. Coord. Chem. Rev. 2017, 352, 306–327.

[341]

Zhang, Y. J.; Wang, L.; Zhang, N. N.; Zhou, Z. J. Adsorptive environmental applications of MXene nanomaterials: A review. RSC Adv. 2018, 8, 19895–19905.

[342]

Sinha, A.; Dhanjai; Zhao, H. M.; Huang, Y. J.; Lu, X. B.; Chen, J. P.; Jain, R. MXene: An emerging material for sensing and biosensing. TrAC Trends Anal. Chem. 2018, 105, 424–435.

[343]

Gao, L. F.; Chen, H. L.; Zhang, F.; Mei, S.; Zhang, Y.; Bao, W. L.; Ma, C. Y.; Yin, P.; Guo, J.; Jiang, X. T. et al. Ultrafast relaxation dynamics and nonlinear response of few-layer niobium carbide MXene. Small Methods 2020, 4, 2000250.

[344]

Wang, Y. D.; Wang, Y. W.; Chen, K. Q.; Qi, K.; Xue, T. Y.; Zhang, H.; He, J.; Xiao, S. Niobium carbide MXenes with broad-band nonlinear optical response and ultrafast carrier dynamics. ACS Nano 2020, 14, 10492–10502.

[345]

Wang, C.; Wang, Y. Z.; Jiang, X. T.; Xu, J. W.; Huang, W. C.; Zhang, F.; Liu, J. F.; Yang, F. M.; Song, Y. F.; Ge, Y. Q. et al. MXene Ti3C2Tx: A promising photothermal conversion material and application in all-optical modulation and all-optical information loading. Adv. Opt. Mater. 2019, 7, 1900060.

[346]

Jiang, X. T.; Liu, S. X.; Liang, W. Y.; Luo, S. J.; He, Z. L.; Ge, Y. Q.; Wang, H. D.; Cao, R.; Zhang, F.; Wen, Q. et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photonics Rev. 2018, 12, 1700229.

[347]

Huang, W. C.; Ma, C. Y.; Li, C.; Zhang, Y.; Hu, L. P.; Chen, T. T.; Tang, Y. F.; Ju, J. F.; Zhang, H. Highly stable MXene (V2CTx)-based harmonic pulse generation. Nanophotonics 2020, 9, 2577–2585.

[348]

Gao, L. F.; Chen, H. L.; Kuklin, A. V.; Wageh, S.; Al-Ghamdi, A. A.; Ågren, H.; Zhang, H. Optical properties of few-layer Ti3CN MXene: From experimental observations to theoretical calculations. ACS Nano 2022, 16, 3059–3069.

[349]

Gogotsi, Y.; Huang, Q. MXenes: Two-dimensional building blocks for future materials and devices. ACS Nano 2021, 15, 5775–5780.

[350]
Chen, J. J.; Jin, Q. Q.; Li, Y. B.; Shao, H.; Liu, P. C.; Liu, Y.; Taberna, P. L.; Huang, Q.; Lin, Z. F.; Simon, P. Molten salt-shielded synthesis (MS3) of MXenes in air. Energy Environ. Mater., in press, https://doi.org/10.1002/eem2.12328.
[351]

Wan, S. J.; Li, X.; Chen, Y.; Liu, N. N.; Du, Y.; Dou, S. X.; Jiang, L.; Cheng, Q. F. High-strength scalable MXene films through bridging-induced densification. Science 2021, 374, 96–99.

[352]

Li, Y. B.; Shao, H.; Lin, Z. F.; Lu, J.; Liu, L. Y.; Duployer, B.; Persson, P. O. Å.; Eklund, P.; Hultman, L.; Li, M. et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 2020, 19, 894–899.

[353]

Li, X. L.; Li, N.; Huang, Z. D.; Chen, Z.; Zhao, Y. W.; Liang, G. J.; Yang, Q.; Li, M.; Huang, Q.; Dong, B. B. et al. Confining aqueous Zn-Br halide redox chemistry by Ti3C2Tx MXene. ACS Nano 2021, 15, 1718–1726.

[354]

Fang, W.; Du, C. F.; Kuang, M.; Chen, M. X.; Huang, W. J.; Ren, H.; Xu, J. W.; Feldhoff, A.; Yan, Q. Y. Boosting efficient ambient nitrogen oxidation by a well-dispersed Pd on MXene electrocatalyst. Chem. Commun. 2020, 56, 5779–5782.

[355]

Du, C. F.; Dinh, K. N.; Liang, Q. H.; Zheng, Y.; Luo, Y. B.; Zhang, J. L.; Yan, Q. Y. Self-assemble and in situ formation of Ni1–xFexPS3 nanomosaic-decorated MXene hybrids for overall water splitting. Adv. Energy Mater. 2018, 8, 1801127.

[356]

Du, C. F.; Sun, X. L.; Yu, H.; Liang, Q. H.; Dinh, K. N.; Zheng, Y.; Luo, Y. B.; Wang, Z. G.; Yan, Q. Y. Synergy of Nb doping and surface alloy enhanced on water-alkali electrocatalytic hydrogen generation performance in Ti-based MXene. Adv. Sci. 2019, 6, 1900116.

[357]

Du, C. F.; Sun, X. L.; Yu, H.; Fang, W.; Jing, Y.; Wang, Y. H.; Li, S. Q.; Liu, X. H.; Yan, Q. Y. V4C3Tx MXene: A promising active substrate for reactive surface modification and the enhanced electrocatalytic oxygen evolution activity. InfoMat 2020, 2, 950–959.

[358]

Yu, H.; Wang, Y. H.; Jing, Y.; Ma, J. M.; Du, C. F.; Yan, Q. Y. Surface modified MXene-based nanocomposites for electrochemical energy conversion and storage. Small 2019, 15, 1901503.

[359]

Du, C. F.; Yang, L.; Tang, K. W.; Fang, W.; Zhao, X. Y.; Liang, Q. H.; Liu, X. H.; Yu, H.; Qi, W. H.; Yan, Q. Y. Ni nanoparticles/V4C3Tx MXene heterostructures for electrocatalytic nitrogen fixation. Mater. Chem. Front. 2021, 5, 2338–2346.

[360]

Xu, C.; Wang, L. B.; Liu, Z. B.; Chen, L.; Guo, J. K.; Kang, N.; Ma, X. L.; Cheng, H. M.; Ren, W. C. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 2015, 14, 1135–1141.

[361]

Sahare, S.; Ghoderao, P.; Yin, P.; Saleemi, A. S.; Lee, S. L.; Chan, Y.; Zhang, H. An assessment of MXenes through scanning probe microscopy. Small Methods 2022, 6, 2101599.

[362]

Li, X. L.; Li, Q.; Hou, Y.; Yang, Q.; Chen, Z.; Huang, Z. D.; Liang, G. J.; Zhao, Y. W.; Ma, L. T.; Li, M. et al. Toward a practical Zn powder anode: Ti3C2Tx MXene as a lattice-match electrons/ions redistributor. ACS Nano 2021, 15, 14631–14642.

[363]

Li, X. L.; Li, M.; Luo, K.; Hou, Y.; Li, P.; Yang, Q.; Huang, Z. D.; Liang, G. J.; Chen, Z.; Du, S. Y. et al. Lattice matching and halogen regulation for synergistically induced uniform zinc electrodeposition by halogenated Ti3C2 MXenes. ACS Nano 2022, 16, 813–822.

[364]

Li, X. L.; Ma, X. Y.; Hou, Y.; Zhang, Z. H.; Lu, Y.; Huang, Z. D.; Liang, G. J.; Li, M.; Yang, Q.; Ma, J. L. et al. Intrinsic voltage plateau of a Nb2CTx MXene cathode in an aqueous electrolyte induced by high-voltage scanning. Joule 2021, 5, 2993–3005.

[365]

Li, X. L.; Li, N.; Huang, Z. D.; Chen, Z.; Liang, G. J.; Yang, Q.; Li, M.; Zhao, Y. W.; Ma, L. T.; Dong, B. B. et al. Enhanced redox kinetics and duration of aqueous I2/I conversion chemistry by MXene confinement. Adv. Mater. 2021, 33, 2006897.

[366]

Wang, L.; Song, P.; Lin, C. T.; Kong, J.; Gu, J. W. 3D shapeable, superior electrically conductive cellulose nanofibers/Ti3C2Tx MXene aerogels/epoxy nanocomposites for promising EMI shielding. Research (Wash. D C) 2020, 2020, 4093732.

[367]

Cheng, Y.; Li, X. Y.; Qin, Y. X.; Fang, Y. T.; Liu, G. L.; Wang, Z. Y.; Matz, J.; Dong, P.; Shen, J. F.; Ye, M. X. Hierarchically porous polyimide/Ti3C2Tx film with stable electromagnetic interference shielding after resisting harsh conditions. Sci. Adv. 2021, 7, eabj1663.

[368]

Li, X. L.; Li, M. H.; Li, X.; Fan, X. M.; Zhi, C. Y. Low infrared emissivity and strong stealth of Ti-based MXenes. Research (Wash. D C) 2022, 2022, 9892628.

[369]

Iqbal, A.; Sambyal, P.; Koo, C. M. 2D MXenes for electromagnetic shielding: A review. Adv. Funct. Mater. 2020, 30, 2000883.

[370]

Cao, M. S.; Cai, Y. Z.; He, P.; Shu, J. C.; Cao, W. Q.; Yuan, J. 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 2019, 359, 1265–1302.

[371]

Lu, X. F.; Zhang, Q. H.; Liao, J. C.; Chen, H. Y.; Fan, Y. C.; Xing, J. J.; Gu, S. J.; Huang, J. L.; Ma, J. X.; Wang, J. C. et al. High-efficiency thermoelectric power generation enabled by homogeneous incorporation of MXene in (Bi, Sb)2Te3 matrix. Adv. Energy Mater. 2020, 10, 1902986.

[372]

Diao, J. L.; Yuan, J.; Cai, Z. H.; Xia, L.; Cheng, Z.; Liu, X. Y.; Ma, W. L.; Wang, S. F.; Huang, Y. High-performance electromagnetic interference shielding and thermoelectric conversion derived from multifunctional Bi2Te2.7Se0.3/MXene composites. Carbon 2022, 196, 243–252.

[373]

Sarikurt, S.; Çakır, D.; Keçeli, M.; Sevik, C. The influence of surface functionalization on thermal transport and thermoelectric properties of MXene monolayers. Nanoscale 2018, 10, 8859–8868.

[374]

Fashandi, H.; Dahlqvist, M.; Lu, J.; Palisaitis, J.; Simak, S. I.; Abrikosov, I. A.; Rosen, J.; Hultman, L.; Andersson, M.; Spetz, A. L. et al. Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC. Nat. Mater. 2017, 16, 814–818.

[375]

Li, M.; Lu, J.; Luo, K.; Li, Y. B.; Chang, K. K.; Chen, K.; Zhou, J.; Rosen, J.; Hultman, L.; Eklund, P. et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 2019, 141, 4730–4737.

[376]

Zhang, X.; Zhang, M. T.; Deng, Y. C.; Xu, M. Q.; Artiglia, L.; Wen, W.; Gao, R.; Chen, B. B.; Yao, S. Y.; Zhang, X. C. et al. A stable low-temperature H2-production catalyst by crowding Pt on α-MoC. Nature 2021, 589, 396–401.

[377]

Hong, Y. L.; Liu, Z. B.; Wang, L.; Zhou, T. Y.; Ma, W.; Xu, C.; Feng, S.; Chen, L.; Chen, M. L.; Sun, D. M. et al. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science 2020, 369, 670–674.

[378]

Salim, O.; Mahmoud, K. A.; Pant, K. K.; Joshi, R. K. Introduction to MXenes: Synthesis and characteristics. Mater. Today Chem. 2019, 14, 100191.

[379]

Park, G. S.; Ho, D. H.; Lyu, B. Z.; Jeon, S.; Ryu, D. Y.; Kim, D. W.; Lee, N.; Kim, S.; Song, Y. J.; Jo, S. B. et al. Comb-type polymer-hybridized MXene nanosheets dispersible in arbitrary polar, nonpolar, and ionic solvents. Sci. Adv. 2022, 8, eabl5299.

[380]

Pang, J. B.; Chang, B.; Liu, H.; Zhou, W. J. Potential of MXene-based heterostructures for energy conversion and storage. ACS Energy Lett. 2022, 7, 78–96.

[381]

Wang, L.; Zhang, M. Y.; Yang, B.; Tan, J. J.; Ding, X. Y.; Li, W. W. Recent advances in multidimensional (1D, 2D, and 3D) composite sensors derived from MXene: Synthesis, structure, application, and perspective. Small Methods 2021, 5, 2100409.

[382]

Pang, J. B.; Mendes, R. G.; Bachmatiuk, A.; Zhao, L.; Ta, H. Q.; Gemming, T.; Liu, H.; Liu, Z. F.; Rummeli, M. H. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 2019, 48, 72–133.

[383]

Liu, N.; Li, Q. Q.; Wan, H. J.; Chang, L. B.; Wang, H.; Fang, J. H.; Ding, T. P.; Wen, Q. Y.; Zhou, L. J.; Xiao, X. High-temperature stability in air of Ti3C2Tx MXene-based composite with extracted bentonite. Nat. Commun. 2022, 13, 5551.

[384]

Chen, H. L.; Gao, L. F.; Al-Hartomy, O. A.; Zhang, F.; Al-Ghamdi, A.; Guo, J.; Song, Y. F.; Wang, Z. H.; Algarni, H.; Wang, C. et al. Tailoring the ultrafast and nonlinear photonics of MXenes through elemental replacement. Nanoscale 2021, 13, 15891–15898.

[385]

Yue, Y.; Liu, N. S.; Liu, W. J.; Li, M.; Ma, Y. N.; Luo, C.; Wang, S. L.; Rao, J. Y.; Hu, X. K.; Su, J. et al. 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor. Nano Energy 2018, 50, 79–87.

[386]

Nasrin, K.; Sudharshan, V.; Subramani, K.; Sathish, M. Insights into 2D/2D MXene heterostructures for improved synergy in structure toward next-generation supercapacitors: A review. Adv. Funct. Mater. 2022, 32, 2110267.

[387]

Lu, Y.; Qu, X. Y.; Zhao, W.; Ren, Y. F.; Si, W. L.; Wang, W. J.; Wang, Q.; Huang, W.; Dong, X. C. Highly stretchable, elastic, and sensitive MXene-based hydrogel for flexible strain and pressure sensors. Research (Wash. D C) 2020, 2020, 2038560.

[388]

Zhang, S.; Pang, J. B.; Li, Y. F.; Yang, F.; Gemming, T.; Wang, K.; Wang, X.; Peng, S. A.; Liu, X. Y.; Chang, B. et al. Emerging Internet of Things driven carbon nanotubes-based devices. Nano Res. 2022, 15, 4613–4637.

[389]

Pang, J. B.; Bachmatiuk, A.; Yang, F.; Liu, H.; Zhou, W. J.; Rümmeli, M. H.; Cuniberti, G. Applications of carbon nanotubes in the internet of things era. Nano-Micro Lett. 2021, 13, 191.

[390]

Sreenilayam, S. P.; Ul Ahad, I.; Nicolosi, V.; Brabazon, D. MXene materials based printed flexible devices for healthcare, biomedical and energy storage applications. Mater. Today 2021, 43, 99–131.

[391]

Ahmed, A.; Sharma, S.; Adak, B.; Hossain, M.; LaChance, A. M.; Mukhopadhyay, S.; Sun, L. Y. Two-dimensional MXenes: New frontier of wearable and flexible electronics. InfoMat 2022, 4, e12295.

[392]

Ma, C.; Ma, M. G.; Si, C. L.; Ji, X. X.; Wan, P. B. Flexible MXene-based composites for wearable devices. Adv. Funct. Mater. 2021, 31, 2009524.

[393]

Simon, P.; Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 2020, 19, 1151–1163.

[394]

Ling, J.; Kunwar, R.; Li, L. L.; Peng, S. J.; Misnon, I. I.; Rahim, M. H. A.; Yang, C. C.; Jose, R. Self-rechargeable energizers for sustainability. eScience 2022, 2, 347–364.

[395]

Ding, G. L.; Zeng, K. L.; Zhou, K.; Li, Z. X.; Zhou, Y.; Zhai, Y. B.; Zhou, L.; Chen, X. L.; Han, S. T. Configurable multi-state non-volatile memory behaviors in Ti3C2 nanosheets. Nanoscale 2019, 11, 7102–7110.

[396]

Gong, Y.; Xing, X. C.; Wang, Y.; Lv, Z. Y.; Zhou, Y.; Han, S. T. Emerging MXenes for functional memories. Small Sci. 2021, 1, 2100006.

[397]

Ding, G. L.; Yang, B. D.; Chen, R. S.; Zhou, K.; Han, S. T.; Zhou, Y. MXenes for memristive and tactile sensory systems. Appl. Phys. Rev. 2021, 8, 011316.

[398]

Wang, Y.; Gong, Y.; Yang, L.; Xiong, Z. Y.; Lv, Z. Y.; Xing, X. C.; Zhou, Y.; Zhang, B.; Su, C. L.; Liao, Q. F. et al. MXene-ZnO memristor for multimodal in-sensor computing. Adv. Funct. Mater. 2021, 31, 2100144.

[399]

Guo, L. C.; Mu, B. Y.; Li, M. Z.; Yang, B. D.; Chen, R. S.; Ding, G. L.; Zhou, K.; Liu, Y. H.; Kuo, C. C.; Han, S. T. et al. Stacked two-dimensional MXene composites for an energy-efficient memory and digital comparator. ACS Appl. Mater. Interfaces 2021, 13, 39595–39605.

[400]

Wang, S. Y.; Chen, X. Z.; Huang, X. H.; Zhang, D. W.; Zhou, P. Neuromorphic engineering for hardware computational acceleration and biomimetic perception motion integration. Adv. Intel. Syst. 2020, 2, 2000124.

[401]

Yan, X. B.; Wang, K. Y.; Zhao, J. H.; Zhou, Z. Y.; Wang, H.; Wang, J. J.; Zhang, L.; Li, X. Y.; Xiao, Z. A.; Zhao, Q. L. et al. A new memristor with 2D Ti3C2Tx MXene flakes as an artificial bio-synapse. Small 2019, 15, 1900107.

[402]

Bian, J. H.; Cao, Z. Y.; Zhou, P. Neuromorphic computing: Devices, hardware, and system application facilitated by two-dimensional materials. Appl. Phys. Rev. 2021, 8, 041313.

[403]

Huang, M. N.; Gu, Z. Y.; Zhang, J. G.; Zhang, D.; Zhang, H.; Yang, Z. G.; Qu, J. L. MXene and black phosphorus based 2D nanomaterials in bioimaging and biosensing: Progress and perspectives. J. Mater. Chem. B 2021, 9, 5195–5220.

[404]

Xing, C. Y.; Chen, S. Y.; Liang, X.; Liu, Q.; Qu, M. M.; Zou, Q. S.; Li, J. H.; Tan, H.; Liu, L. P.; Fan, D. Y. et al. Two-dimensional MXene (Ti3C2)-integrated cellulose hydrogels: Toward smart three-dimensional network nanoplatforms exhibiting light-induced swelling and bimodal photothermal/chemotherapy anticancer activity. ACS Appl. Mater. Interfaces 2018, 10, 27631–27643.

[405]

Xu, Y. J.; Wang, Y. W.; An, J.; Sedgwick, A. C.; Li, M. L.; Xie, J. L.; Hu, W. B.; Kang, J. L.; Sen, S.; Steinbrueck, A. et al. 2D-ultrathin MXene/DOXjade platform for iron chelation chemo-photothermal therapy. Bioact. Mater. 2022, 14, 76–85.

[406]
Dang, S. S.; Mo, Y. M.; Zeng, J. Q.; Xu, Y. J.; Xie, Z. J.; Zhang, H.; Zhang, B.; Nie, G. H. Three birds with one stone: Oxygen self-supply engineering palladium nanocluster/titanium carbide hybrid for single-NIR laser-triggered synergistic photodynamic-photothermal therapy. Nanophotonics, in press, https://doi.org/10.1515/nanoph-2022-0268.
[407]

Xie, Z. J.; Chen, S. Y.; Duo, Y. H.; Zhu, Y.; Fan, T. J.; Zou, Q. S.; Qu, M. M.; Lin, Z. T.; Zhao, J. L.; Li, Y. et al. Biocompatible two-dimensional titanium nanosheets for multimodal imaging-guided cancer theranostics. ACS Appl. Mater. Interfaces 2019, 11, 22129–22140.

[408]

Lin, H.; Chen, Y.; Shi, J. L. Insights into 2D MXenes for versatile biomedical applications: Current advances and challenges ahead. Adv. Sci. 2018, 5, 1800518.

[409]

Hao, S. Y.; Han, H. C.; Yang, Z. Y.; Chen, M. T.; Jiang, Y. Y.; Lu, G. X.; Dong, L.; Wen, H. L.; Li, H.; Liu, J. R. et al. Recent advancements on photothermal conversion and antibacterial applications over MXenes-based materials. Nano-Micro Lett. 2022, 14, 178.

[410]

Liu, L.; Zhu, M. H.; Ma, Z. W.; Xu, X. D.; Seraji, S. M.; Yu, B.; Sun, Z. Q.; Wang, H.; Song, P. A. A reactive copper-organophosphate-MXene heterostructure enabled antibacterial, self-extinguishing and mechanically robust polymer nanocomposites. Chem. Eng. J. 2022, 430, 132712.

[411]

Iravani, S.; Varma, R. S. MXenes and MXene-based materials for tissue engineering and regenerative medicine: Recent advances. Mater. Adv. 2021, 2, 2906–2917.

[412]

Tang, Z. M.; Xiao, Y. F.; Kong, N.; Liu, C.; Chen, W.; Huang, X. G.; Xu, D. Y.; Ouyang, J.; Feng, C.; Wang, C. et al. Nano-bio interfaces effect of two-dimensional nanomaterials and their applications in cancer immunotherapy. Acta Pharm. Sin. B 2021, 11, 3447–3464.

[413]

Khan, K.; Tareen, A. K.; Iqbal, M.; Mahmood, A.; Mahmood, N.; Shi, Z.; Yin, J. D.; Qing, D.; Ma, C. Y.; Zhang, H. Recent development in graphdiyne and its derivative materials for novel biomedical applications. J. Mater. Chem. B 2021, 9, 9461–9484.

[414]

Duo, Y. H.; Xie, Z. J.; Wang, L. D.; Abbasi, N. M.; Yang, T. Q.; Li, Z. H.; Hu, G. X.; Zhang, H. Borophene-based biomedical applications: Status and future challenges. Coord. Chem. Rev. 2021, 427, 213549.

[415]

Kong, N.; Ji, X. Y.; Wang, J. Q.; Sun, X. N.; Chen, G. Q.; Fan, T. J.; Liang, W. Y.; Zhang, H.; Xie, A. Y.; Farokhzad, O. C. et al. ROS-mediated selective killing effect of black phosphorus: Mechanistic understanding and its guidance for safe biomedical applications. Nano Lett. 2020, 20, 3943–3955.

[416]

Tang, Z. M.; Kong, N.; Ouyang, J.; Feng, C.; Kim, N. Y.; Ji, X. Y.; Wang, C.; Farokhzad, O. C.; Zhang, H.; Tao, W. Phosphorus science-oriented design and synthesis of multifunctional nanomaterials for biomedical applications. Matter 2020, 2, 297–322.

[417]

Xie, Z. J.; Wang, D.; Fan, T. J.; Xing, C. Y.; Li, Z. J.; Tao, W.; Liu, L. P.; Bao, S. Y.; Fan, D. Y.; Zhang, H. Black phosphorus analogue tin sulfide nanosheets: Synthesis and application as near-infrared photothermal agents and drug delivery platforms for cancer therapy. J. Mater. Chem. B 2018, 6, 4747–4755.

[418]

Yang, X.; Zhang, C. Q.; Deng, D. W.; Gu, Y. Q.; Wang, H.; Zhong, Q. F. Multiple stimuli-responsive MXene-based hydrogel as intelligent drug delivery carriers for deep chronic wound healing. Small 2022, 18, 2104368.

[419]

Cui, D.; Kong, N.; Ding, L.; Guo, Y. C.; Yang, W. R.; Yan, F. H. Ultrathin 2D titanium carbide MXene (Ti3C2Tx) nanoflakes activate WNT/HIF-1α-mediated metabolism reprogramming for periodontal regeneration. Adv. Healthc. Mater. 2021, 10, 2101215.

[420]

Rafieerad, A.; Yan, W. A.; Alagarsamy, K. N.; Srivastava, A.; Sareen, N.; Arora, R. C.; Dhingra, S. Fabrication of smart tantalum carbide MXene quantum dots with intrinsic immunomodulatory properties for treatment of allograft vasculopathy. Adv. Funct. Mater. 2021, 31, 2106786.

[421]

Pan, S. S.; Yin, J. H.; Yu, L. D.; Zhang, C. Q.; Zhu, Y. F.; Gao, Y. S.; Chen, Y. 2D MXene-integrated 3D-printing scaffolds for augmented osteosarcoma phototherapy and accelerated tissue reconstruction. Adv. Sci. 2020, 7, 1901511.

[422]

Fan, T. J.; Yan, L.; He, S. L.; Hong, Q. C.; Ai, F. J.; He, S. Q.; Ji, T.; Hu, X.; Ha, E. N.; Zhang, B. et al. Biodistribution, degradability and clearance of 2D materials for their biomedical applications. Chem. Soc. Rev. 2022, 51, 7732–7751.

[423]

Umrao, S.; Tabassian, R.; Kim, J.; Nguyen, V. H.; Zhou, Q. T.; Nam, S.; Oh, I. K. MXene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics. Sci. Robot. 2019, 4, eaaw7797.

Nano Research
Pages 5767-5795
Cite this article:
Pang J, Peng S, Hou C, et al. Applications of MXenes in human-like sensors and actuators. Nano Research, 2023, 16(4): 5767-5795. https://doi.org/10.1007/s12274-022-5272-8
Topics:

2288

Views

146

Downloads

33

Crossref

40

Web of Science

36

Scopus

1

CSCD

Altmetrics

Received: 07 September 2022
Revised: 25 October 2022
Accepted: 31 October 2022
Published: 23 November 2022
© The Author(s) 2022

Copyright: © 2022 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return