AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Free-standing polymer-metal-organic framework membrane with high proton conductivity and water stability

Hexiang Gao1Zhanpeng Gao1Chao Ye2Guoli Zhou1( )Zhiwei Yang1Kun Dai3Wenjia Wu1( )Jingtao Wang1
School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide 5005, Australia
School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
Show Author Information

Graphical Abstract

The pre-organization of polymer and metal ions allows the anisotropic growth to prepare polyMOF nanosheet. This unique structure permits continuous transfer pathway in vertical direction, affording superior structural stability against water and rapid proton transfer for polyMOF membrane.

Abstract

As a new class of porous material, polymer-metal-organic framework (polyMOF) has attracted tremendous interests owing to their combined advantages of polymer and crystalline MOF. However, the poor film-forming ability of polyMOF limits its widespread application, especially in membrane separation area. Herein, for the first time, we demonstrate the fabrication of free-standing polyMOF membrane. The polyMOF nanosheets are synthesized by a polymer-assisted self-inhibition crystal growth strategy. Followed by self-assembly through vacuum filtration, a 20 μm-thick free-standing polyMOF membrane is constructed. Benefiting from the inclusion of polymer with hydrophobic backbone and the continuously distributed non-coordinated hydrophilic groups along polymer chain, the polyMOF membrane attains excellent structure stability against water, as well as superior proton transfer property. Proton conductivity as high as 112 and 25.6 mS·cm–1 is obtained by this polyMOF membrane at 100% and 20% relative humidity (RH), respectively, which are two orders of magnitude higher than those of pristine MOF. The conductivity under low humidity (20% RH) is even over 8 times higher than that of commercial Nafion membrane (3 mS·cm–1). This study may provide some guidance on the development of polyMOF membranes.

Electronic Supplementary Material

Download File(s)
12274_2022_5276_MOESM1_ESM.pdf (1.5 MB)

References

[1]

Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

[2]

Wang, Y. H.; Jin, H.; Ma, Q.; Mo, K.; Mao, H. Z.; Feldhoff, A.; Cao, X. Z.; Li, Y. S.; Pan, F. S.; Jiang, Z. Y. A MOF glass membrane for gas separation. Angew. Chem., Int. Ed. 2020, 59, 4365–4369.

[3]

Jia, W.; Wu, B. H.; Sun, S. T.; Wu, P. Y. Interfacially stable MOF nanosheet membrane with tailored nanochannels for ultrafast and thermo-responsive nanofiltration. Nano Res. 2020, 13, 2973–2978.

[4]

Lim, D. W.; Kitagawa, H. Rational strategies for proton-conductive metal-organic frameworks. Chem. Soc. Rev. 2021, 50, 6349–6368.

[5]

Zhang, K.; Xie, X. J.; Li, H. Y.; Gao, J. X.; Nie, L.; Pan, Y.; Xie, J.; Tian, D.; Liu, W. L.; Fan, Q. L. et al. Highly water-stable lanthanide-oxalate MOFs with remarkable proton conductivity and tunable luminescence. Adv. Mater. 2017, 29, 1701804.

[6]

Lim, D. W.; Kitagawa, H. Proton transport in metal-organic frameworks. Chem. Rev. 2020, 120, 8416–8467.

[7]

Park, C. H.; Lee, S. Y.; Hwang, D. S.; Shin, D. W.; Cho, D. H.; Lee, K. H.; Kim, T. W.; Kim, T. W.; Lee, M.; Kim, D. S. et al. Nanocrack-regulated self-humidifying membranes. Nature 2016, 532, 480–483.

[8]

Li, N. W.; Wang, C. Y.; Lee, S. Y.; Park, C. H.; Lee, Y. M.; Guiver, M. D. Enhancement of proton transport by nanochannels in comb-shaped copoly(arylene ether sulfone)s. Angew. Chem., Int. Ed. 2011, 50, 9158–9161.

[9]

Miyake, J.; Taki, R.; Mochizuki, T.; Shimizu, R.; Akiyama, R.; Uchida, M.; Miyatake, K. Design of flexible polyphenylene proton-conducting membrane for next-generation fuel cells. Sci. Adv. 2017, 3, eaao0476.

[10]

Shimizu, G. K. H.; Taylor, J. M.; Kim, S. Proton conduction with metal-organic frameworks. Science 2013, 341, 354–355.

[11]

Bureekaew, S.; Horike, S.; Higuchi, M.; Mizuno, M.; Kawamura, T.; Tanaka, D.; Yanai, N.; Kitagawa, S. One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity. Nat. Mater. 2009, 8, 831–836.

[12]

Hurd, J. A.; Vaidhyanathan, R.; Thangadurai, V.; Ratcliffe, C. I.; Moudrakovski, I. L.; Shimizu, G. K. H. Anhydrous proton conduction at 150 oC in a crystalline metal-organic framework. Nat. Chem. 2009, 1, 705–710.

[13]

Umeyama, D.; Horike, S.; Inukai, M.; Hijikata, Y.; Kitagawa, S. Confinement of mobile histamine in coordination nanochannels for fast proton transfer. Angew. Chem., Int. Ed. 2011, 50, 11706–11709.

[14]

Taylor, J. M.; Dawson, K. W.; Shimizu, G. K. H. A water-stable metal-organic framework with highly acidic pores for proton-conducting applications. J. Am. Chem. Soc. 2013, 135, 1193–1196.

[15]

Li, X. M.; Dong, L. Z.; Li, S. L.; Xu, G.; Liu, J.; Zhang, F. M.; Lu, L. S.; Lan, Y. Q. Synergistic conductivity effect in a proton sources-coupled metal-organic framework. ACS Energy Lett. 2017, 2, 2313–2318.

[16]

Kaye, S. S.; Dailly, A.; Yaghi, O. M.; Long, J. R. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1, 4-benzenedicarboxylate)3 (MOF-5). J. Am. Chem. Soc. 2007, 129, 14176–14177.

[17]

Schoenecker, P. M.; Carson, C. G.; Jasuja, H.; Flemming, C. J. J.; Walton, K. S. Effect of water adsorption on retention of structure and surface area of metal-organic frameworks. Ind. Eng. Chem. Res. 2012, 51, 6513–6519.

[18]

Ayala, S. Jr.; Zhang, Z. J.; Cohen, S. M. Hierarchical structure and porosity in UiO-66 polyMOFs. Chem. Commun. 2017, 53, 3058–3061.

[19]

Kitao, T.; Zhang, Y. Y.; Kitagawa, S.; Wang, B.; Uemura, T. Hybridization of MOFs and polymers. Chem. Soc. Rev. 2017, 46, 3108–3133.

[20]

Pearson, M. A.; Dincă, M.; Johnson, J. A. Radical PolyMOFs: A role for ligand dispersity in enabling crystallinity. Chem. Mater. 2021, 33, 9508–9514.

[21]

Bentz, K. C.; Gnanasekaran, K.; Bailey, J. B.; Ayala, S. Jr. ; Tezcan, F. A. ; Gianneschi, N. C. ; Cohen, S. M. Inside polyMOFs:Layered structures in polymer-based metal-organic frameworks. Chem. Sci. 2020, 11, 10523–10528.

[22]

Zhang, Z. J.; Nguyen, H. T. H.; Miller, S. A.; Ploskonka, A. M.; Decoste, J. B.; Cohen, S. M. Polymer-metal-organic frameworks (polyMOFs) as water tolerant materials for selective carbon dioxide separations. J. Am. Chem. Soc. 2016, 138, 920–925.

[23]

Zhang, Z. J.; Nguyen, H. T. H.; Miller, S. A.; Cohen, S. M. PolyMOFs: A class of interconvertible polymer-metal-organic-framework hybrid materials. Angew. Chem., Int. Ed. 2015, 127, 6250–6255.

[24]

Frederick, E.; Appelhans, L. N.; Del Rio, F. W.; Strong, K. T.; Smith, S.; Dickens, S.; Vreeland, E. Synthesis and mechanical properties of sub 5-μm polyUiO-66 thin films on gold surfaces. ChemPhysChem 2022, 23, e202100673.

[25]

Zhao, M. T.; Wang, Y. X.; Ma, Q. L.; Huang, Y.; Zhang, X.; Ping, J. F.; Zhang, Z. C.; Lu, Q. P.; Yu, Y. F.; Xu, H. et al. Ultrathin 2D metal-organic framework nanosheets. Adv. Mater. 2015, 27, 7372–7378.

[26]

Tian, M.; Pei, F.; Yao, M. S.; Fu, Z. H.; Lin, L. L.; Wu, G. D.; Xu, G.; Kitagawa, H.; Fang, X. L. Ultrathin MOF nanosheet assembled highly oriented microporous membrane as an interlayer for lithium-sulfur batteries. Energy Stor. Mater. 2019, 21, 14–21.

[27]

Duan, P.; Moreton, J. C.; Tavares, S. R.; Semino, R.; Maurin, G.; Cohen, S. M.; Schmidt-Rohr, K. Polymer infiltration into metal-organic frameworks in mixed-matrix membranes detected in situ by NMR. J. Am. Chem. Soc. 2019, 141, 7589–7595.

[28]

Guo, Y.; Jiang, Z. Q.; Ying, W.; Chen, L. P.; Liu, Y. Z.; Wang, X. B.; Jiang, Z. J.; Chen, B. L.; Peng, X. S. A DNA-threaded ZIF-8 membrane with high proton conductivity and low methanol permeability. Adv. Mater. 2018, 30, 1705155.

[29]

Wang, Y.; Gao, H. X.; Wu, W. J.; Zhou, Z. F.; Yang, Z. W.; Wang, J. T.; Zou, Y. C. Nafion-threaded MOF laminar membrane with efficient and stable transfer channels towards highly enhanced proton conduction. Nano Res. 2022, 15, 3195–3203.

[30]

Motoyama, S.; Makiura, R.; Sakata, O.; Kitagawa, H. Highly crystalline nanofilm by layering of porphyrin metal-organic framework sheets. J. Am. Chem. Soc. 2011, 133, 5640–5643.

[31]

Zhang, M. C.; Mao, Y. Y.; Liu, G. Z.; Liu, G. P.; Fan, Y. Q.; Jin, W. Q. Molecular bridges stabilize graphene oxide membranes in water. Angew. Chem., Int. Ed. 2020, 59, 1689–1695.

[32]

Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.

[33]

Liu, X.; Zhang, J. F.; Zheng, C. Y.; Xue, J. D.; Huang, T.; Yin, Y.; Qin, Y. Z.; Jiao, K.; Du, Q.; Guiver, M. D. Oriented proton-conductive Nano-sponge-facilitated polymer electrolyte membranes. Energy Environ. Sci. 2020, 13, 297–309.

Nano Research
Pages 7950-7957
Cite this article:
Gao H, Gao Z, Ye C, et al. Free-standing polymer-metal-organic framework membrane with high proton conductivity and water stability. Nano Research, 2023, 16(5): 7950-7957. https://doi.org/10.1007/s12274-022-5276-4
Topics:

941

Views

4

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 29 September 2022
Revised: 27 October 2022
Accepted: 31 October 2022
Published: 29 November 2022
© Tsinghua University Press 2022
Return