Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
As a new class of porous material, polymer-metal-organic framework (polyMOF) has attracted tremendous interests owing to their combined advantages of polymer and crystalline MOF. However, the poor film-forming ability of polyMOF limits its widespread application, especially in membrane separation area. Herein, for the first time, we demonstrate the fabrication of free-standing polyMOF membrane. The polyMOF nanosheets are synthesized by a polymer-assisted self-inhibition crystal growth strategy. Followed by self-assembly through vacuum filtration, a 20 μm-thick free-standing polyMOF membrane is constructed. Benefiting from the inclusion of polymer with hydrophobic backbone and the continuously distributed non-coordinated hydrophilic groups along polymer chain, the polyMOF membrane attains excellent structure stability against water, as well as superior proton transfer property. Proton conductivity as high as 112 and 25.6 mS·cm–1 is obtained by this polyMOF membrane at 100% and 20% relative humidity (RH), respectively, which are two orders of magnitude higher than those of pristine MOF. The conductivity under low humidity (20% RH) is even over 8 times higher than that of commercial Nafion membrane (3 mS·cm–1). This study may provide some guidance on the development of polyMOF membranes.
Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.
Wang, Y. H.; Jin, H.; Ma, Q.; Mo, K.; Mao, H. Z.; Feldhoff, A.; Cao, X. Z.; Li, Y. S.; Pan, F. S.; Jiang, Z. Y. A MOF glass membrane for gas separation. Angew. Chem., Int. Ed. 2020, 59, 4365–4369.
Jia, W.; Wu, B. H.; Sun, S. T.; Wu, P. Y. Interfacially stable MOF nanosheet membrane with tailored nanochannels for ultrafast and thermo-responsive nanofiltration. Nano Res. 2020, 13, 2973–2978.
Lim, D. W.; Kitagawa, H. Rational strategies for proton-conductive metal-organic frameworks. Chem. Soc. Rev. 2021, 50, 6349–6368.
Zhang, K.; Xie, X. J.; Li, H. Y.; Gao, J. X.; Nie, L.; Pan, Y.; Xie, J.; Tian, D.; Liu, W. L.; Fan, Q. L. et al. Highly water-stable lanthanide-oxalate MOFs with remarkable proton conductivity and tunable luminescence. Adv. Mater. 2017, 29, 1701804.
Lim, D. W.; Kitagawa, H. Proton transport in metal-organic frameworks. Chem. Rev. 2020, 120, 8416–8467.
Park, C. H.; Lee, S. Y.; Hwang, D. S.; Shin, D. W.; Cho, D. H.; Lee, K. H.; Kim, T. W.; Kim, T. W.; Lee, M.; Kim, D. S. et al. Nanocrack-regulated self-humidifying membranes. Nature 2016, 532, 480–483.
Li, N. W.; Wang, C. Y.; Lee, S. Y.; Park, C. H.; Lee, Y. M.; Guiver, M. D. Enhancement of proton transport by nanochannels in comb-shaped copoly(arylene ether sulfone)s. Angew. Chem., Int. Ed. 2011, 50, 9158–9161.
Miyake, J.; Taki, R.; Mochizuki, T.; Shimizu, R.; Akiyama, R.; Uchida, M.; Miyatake, K. Design of flexible polyphenylene proton-conducting membrane for next-generation fuel cells. Sci. Adv. 2017, 3, eaao0476.
Shimizu, G. K. H.; Taylor, J. M.; Kim, S. Proton conduction with metal-organic frameworks. Science 2013, 341, 354–355.
Bureekaew, S.; Horike, S.; Higuchi, M.; Mizuno, M.; Kawamura, T.; Tanaka, D.; Yanai, N.; Kitagawa, S. One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity. Nat. Mater. 2009, 8, 831–836.
Hurd, J. A.; Vaidhyanathan, R.; Thangadurai, V.; Ratcliffe, C. I.; Moudrakovski, I. L.; Shimizu, G. K. H. Anhydrous proton conduction at 150 oC in a crystalline metal-organic framework. Nat. Chem. 2009, 1, 705–710.
Umeyama, D.; Horike, S.; Inukai, M.; Hijikata, Y.; Kitagawa, S. Confinement of mobile histamine in coordination nanochannels for fast proton transfer. Angew. Chem., Int. Ed. 2011, 50, 11706–11709.
Taylor, J. M.; Dawson, K. W.; Shimizu, G. K. H. A water-stable metal-organic framework with highly acidic pores for proton-conducting applications. J. Am. Chem. Soc. 2013, 135, 1193–1196.
Li, X. M.; Dong, L. Z.; Li, S. L.; Xu, G.; Liu, J.; Zhang, F. M.; Lu, L. S.; Lan, Y. Q. Synergistic conductivity effect in a proton sources-coupled metal-organic framework. ACS Energy Lett. 2017, 2, 2313–2318.
Kaye, S. S.; Dailly, A.; Yaghi, O. M.; Long, J. R. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1, 4-benzenedicarboxylate)3 (MOF-5). J. Am. Chem. Soc. 2007, 129, 14176–14177.
Schoenecker, P. M.; Carson, C. G.; Jasuja, H.; Flemming, C. J. J.; Walton, K. S. Effect of water adsorption on retention of structure and surface area of metal-organic frameworks. Ind. Eng. Chem. Res. 2012, 51, 6513–6519.
Ayala, S. Jr.; Zhang, Z. J.; Cohen, S. M. Hierarchical structure and porosity in UiO-66 polyMOFs. Chem. Commun. 2017, 53, 3058–3061.
Kitao, T.; Zhang, Y. Y.; Kitagawa, S.; Wang, B.; Uemura, T. Hybridization of MOFs and polymers. Chem. Soc. Rev. 2017, 46, 3108–3133.
Pearson, M. A.; Dincă, M.; Johnson, J. A. Radical PolyMOFs: A role for ligand dispersity in enabling crystallinity. Chem. Mater. 2021, 33, 9508–9514.
Bentz, K. C.; Gnanasekaran, K.; Bailey, J. B.; Ayala, S. Jr. ; Tezcan, F. A. ; Gianneschi, N. C. ; Cohen, S. M. Inside polyMOFs:Layered structures in polymer-based metal-organic frameworks. Chem. Sci. 2020, 11, 10523–10528.
Zhang, Z. J.; Nguyen, H. T. H.; Miller, S. A.; Ploskonka, A. M.; Decoste, J. B.; Cohen, S. M. Polymer-metal-organic frameworks (polyMOFs) as water tolerant materials for selective carbon dioxide separations. J. Am. Chem. Soc. 2016, 138, 920–925.
Zhang, Z. J.; Nguyen, H. T. H.; Miller, S. A.; Cohen, S. M. PolyMOFs: A class of interconvertible polymer-metal-organic-framework hybrid materials. Angew. Chem., Int. Ed. 2015, 127, 6250–6255.
Frederick, E.; Appelhans, L. N.; Del Rio, F. W.; Strong, K. T.; Smith, S.; Dickens, S.; Vreeland, E. Synthesis and mechanical properties of sub 5-μm polyUiO-66 thin films on gold surfaces. ChemPhysChem 2022, 23, e202100673.
Zhao, M. T.; Wang, Y. X.; Ma, Q. L.; Huang, Y.; Zhang, X.; Ping, J. F.; Zhang, Z. C.; Lu, Q. P.; Yu, Y. F.; Xu, H. et al. Ultrathin 2D metal-organic framework nanosheets. Adv. Mater. 2015, 27, 7372–7378.
Tian, M.; Pei, F.; Yao, M. S.; Fu, Z. H.; Lin, L. L.; Wu, G. D.; Xu, G.; Kitagawa, H.; Fang, X. L. Ultrathin MOF nanosheet assembled highly oriented microporous membrane as an interlayer for lithium-sulfur batteries. Energy Stor. Mater. 2019, 21, 14–21.
Duan, P.; Moreton, J. C.; Tavares, S. R.; Semino, R.; Maurin, G.; Cohen, S. M.; Schmidt-Rohr, K. Polymer infiltration into metal-organic frameworks in mixed-matrix membranes detected in situ by NMR. J. Am. Chem. Soc. 2019, 141, 7589–7595.
Guo, Y.; Jiang, Z. Q.; Ying, W.; Chen, L. P.; Liu, Y. Z.; Wang, X. B.; Jiang, Z. J.; Chen, B. L.; Peng, X. S. A DNA-threaded ZIF-8 membrane with high proton conductivity and low methanol permeability. Adv. Mater. 2018, 30, 1705155.
Wang, Y.; Gao, H. X.; Wu, W. J.; Zhou, Z. F.; Yang, Z. W.; Wang, J. T.; Zou, Y. C. Nafion-threaded MOF laminar membrane with efficient and stable transfer channels towards highly enhanced proton conduction. Nano Res. 2022, 15, 3195–3203.
Motoyama, S.; Makiura, R.; Sakata, O.; Kitagawa, H. Highly crystalline nanofilm by layering of porphyrin metal-organic framework sheets. J. Am. Chem. Soc. 2011, 133, 5640–5643.
Zhang, M. C.; Mao, Y. Y.; Liu, G. Z.; Liu, G. P.; Fan, Y. Q.; Jin, W. Q. Molecular bridges stabilize graphene oxide membranes in water. Angew. Chem., Int. Ed. 2020, 59, 1689–1695.
Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.
Liu, X.; Zhang, J. F.; Zheng, C. Y.; Xue, J. D.; Huang, T.; Yin, Y.; Qin, Y. Z.; Jiao, K.; Du, Q.; Guiver, M. D. Oriented proton-conductive Nano-sponge-facilitated polymer electrolyte membranes. Energy Environ. Sci. 2020, 13, 297–309.