Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Nanocatalysts are likely to contain undetected single-atom components, which may have been ignored but have significant effect in catalytic reactions. Herein, we report a catalyst composed of Mo single atoms (SAs) and MoO2 nanoparticles (NPs) (MoSAs-MoO2@NC), which is an exact model to understand how the SAs contribute to the nanocatalyst. Both experimental results and the density functional theory calculations reveal that Mo SAs on nitrogen-doped carbon provides the reaction zone for nitro reduction, while MoO2 is the active site for decomposing hydrazine hydrate to produce H*. Thanks to the synergy between Mo SAs and MoO2 NPs, this catalyst exhibits noble metal-like catalytic activity (100% conversion at 4 min) for the dechlorination-proof transfer hydrogenation. Additionally, the hydrogen migration on the catalyst is verified by the electrochemical tests in the absence of a hydrogen source. This work provides a model for further study on the coexistence of single atoms in nanoparticle catalysts.
Qiao, S. C.; He, Q.; Zhang, P. J.; Zhou, Y. Z.; Chen, S. M.; Song, L.; Wei, S. Q. Synchrotron-radiation spectroscopic identification towards diverse local environments of single-atom catalysts. J. Mater. Chem. A 2022, 10, 5771–5791.
Qi, R.; Zhu, B. E.; Han, Z. K.; Gao, Y. High-throughput screening of stable single-atom catalysts in CO2 reduction reactions. ACS Catal. 2022, 12, 8269–8278.
Jiang, J. C.; Chen, J. C.; Zhao, M. D.; Yu, Q.; Wang, Y. G.; Li, J. Rational design of copper-based single-atom alloy catalysts for electrochemical CO2 reduction. Nano Res. 2022, 15, 7116–7123.
Fan, L. L.; Wei, X. F.; Li, X. T.; Liu, Z. N.; Li, M. F.; Liu, S.; Kang, Z. X.; Dai, F. N.; Lu, X. Q.; Sun, D. F. Phosphorus-doped iron-nitrogen-carbon catalyst with penta-coordinated single atom sites for efficient oxygen reduction. Nano Res. 2023, 16, 1810–1819.
Gu, Y.; Xi, B. J.; Tian, W. Z.; Zhang, H.; Fu, Q.; Xiong, S. L. Boosting selective nitrogen reduction via geometric coordination engineering on single-tungsten-atom catalysts. Adv. Mater. 2021, 33, 2100429.
Li, Y.; Li, J. W.; Huang, J. H.; Chen, J. X.; Kong, Y.; Yang, B.; Li, Z. J.; Lei, L. C.; Chai, G. L.; Wen, Z. H. et al. Boosting electroreduction kinetics of nitrogen to ammonia via tuning electron distribution of single-atomic iron sites. Angew. Chem., Int. Ed. 2021, 60, 9078–9085.
Jiang, D.; Yao, Y. G.; Li, T. Y.; Wan, G.; Pereira-Hernández, X. I.; Lu, Y. B.; Tian, J. S.; Khivantsev, K.; Engelhard, M. H.; Sun, C. J. et al. Tailoring the local environment of platinum in single-atom Pt1/CeO2 catalysts for robust low-temperature CO oxidation. Angew. Chem., Int. Ed. 2021, 60, 26054–26062.
Nie, L.; Mei, D. H.; Xiong, H. F.; Peng, B.; Ren, Z. B.; Hernandez, X. I. P.; DeLariva, A.; Wang, M.; Engelhard, M. H.; Kovarik, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 2017, 358, 1419–1423.
Doan, T. L. L.; Nguyen, D. C.; Prabhakaran, S.; Kim, D.; Tran, D. T.; Kim, N. H.; Lee, J. H. Single-atom co-decorated MoS2 nanosheets assembled on metal nitride nanorod arrays as an efficient bifunctional electrocatalyst for pH-universal water splitting. Adv. Funct. Mater. 2021, 31, 2100233.
Song, H. Q.; Wu, M.; Tang, Z. Y.; Tse, J. S.; Yang, B.; Lu, S. Y. Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production. Angew. Chem., Int. Ed. 2021, 60, 7234–7244.
Jiang, R.; Li, Q.; Zheng, X.; Wang, W. Z.; Wang, S. B.; Xu, Z. M.; Wu, J. B. Metal-organic framework-derived Co nanoparticles and single atoms as efficient electrocatalyst for pH universal hydrogen evolution reaction. Nano Res. 2022, 15, 7917–7924.
Chen, H.-J.; Yang, Y.-L.; Zou, X.-X.; Shi, X.-L.; Chen, Z.-G. Flexible hollow TiO2@CMS/carbon-fiber van der Waals heterostructures for simulated-solar light photocatalysis and photoelectrocatalysis. J. Mater. Sci. Technol. 2022, 98, 143–150.
Liu, Z. B.; Huang, F.; Peng, M.; Chen, Y. L.; Cai, X. B.; Wang, L. L.; Hu, Z. A.; Wen, X. D.; Wang, N.; Xiao, D. Q. et al. Tuning the selectivity of catalytic nitriles hydrogenation by structure regulation in atomically dispersed Pd catalysts. Nat. Commun. 2021, 12, 6194.
Wei, H. S.; Liu, X. Y.; Wang, A. Q.; Zhang, L. L.; Qiao, B. T.; Yang, X. F.; Huang, Y. Q.; Miao, S.; Liu, J. Y.; Zhang, T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.
Han, L. L.; Liu, X. J.; Chen, J. P.; Lin, R. Q.; Liu, H. X.; Lü, F.; Bak, S.; Liang, Z. X.; Zhao, S. Z.; Stavitski, E. et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 2321–2325.
Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.
Xiong, H. F.; Datye, A. K.; Wang, Y. Thermally stable single-atom heterogeneous catalysts. Adv. Mater. 2021, 33, 2004319.
Ma, Y. Y.; Yang, T.; Zou, H. Y.; Zang, W. J.; Kou, Z. K.; Mao, L.; Feng, Y. P.; Shen, L.; Pennycook, S. J.; Duan, L. L. et al. Synergizing Mo single atoms and Mo2C nanoparticles on CNTs synchronizes selectivity and activity of electrocatalytic N2 reduction to ammonia. Adv. Mater. 2020, 32, 2002177.
Kuai, L.; Chen, Z.; Liu, S. J.; Kan, E. J.; Yu, N.; Ren, Y. M.; Fang, C. H.; Li, X. Y.; Li, Y. D.; Geng, B. Y. Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nat. Commun. 2020, 11, 48.
Downing, R. S.; Kunkeler, P. J.; van Bekkum, H. Catalytic syntheses of aromatic amines. Catal. Today 1997, 37, 121–136.
Hu, Z. N.; Ai, Y. J.; Liu, L.; Zhou, J. J.; Zhang, G.; Liu, H. Q.; Liu, X. Y.; Liu, Z. B.; Hu, J. S.; Sun, H. B. et al. Hydroxyl assisted rhodium catalyst supported on goethite nanoflower for chemoselective catalytic transfer hydrogenation of fully converted nitrostyrenes. Adv. Synth. Catal. 2019, 361, 3146–3154.
Hu, Z. A.; Zhou, J. J.; Ai, Y. J.; Liu, L.; Qi, L.; Jiang, R. H.; Bao, H. J.; Wang, J. T.; Hu, J. S.; Sun, H. B. et al. Two dimensional Rh/Fe3O4/g-C3N4-N enabled hydrazine mediated catalytic transfer hydrogenation of nitroaromatics: A predictable catalyst model with adjoining Rh. J. Catal. 2018, 368, 20–30.
Liu, L.; Zhang, Y.; Qiao, Y. J.; Tan, S. C.; Feng, S. F.; Ma, J.; Liu, Y. H.; Luo, J. B. 2D metal-organic frameworks with square grid structure: A promising new-generation superlubricating material. Nano Today 2021, 40, 101262.
Ding, K. L.; Hu, Z.-N.; Zhang, W. H.; Liang, J. X.; Wang, Y. M.; Li, H.; Sun, Z. J.; Liang, Q. L.; Sun, H.-B. Bimetallic RhIn/ZIF-8 for the catalyic chemoselective hydrogenation of nitrostyrene: Exploration of natural selectivity of hydrogen sources and enhancing intrinsic selectivity. Micropor. Mesopor. Mater. 2022, 332, 111693.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 2010, 132, 154104.
Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.
Han, G. H.; Kim, H.; Kim, J.; Kim, J.; Kim, S. Y.; Ahn, S. H. Micro-nanoporous MoO2@CoMo heterostructure catalyst for hydrogen evolution reaction. Appl. Catal. B: Environ. 2020, 270, 118895.
Liu, Z.; Zhou, S. F.; Xue, S. J.; Guo, Z.; Li, J.; Qu, K. G.; Cai, W. W. Heterointerface-rich Mo2C/MoO2 porous nanorod enables superior alkaline hydrogen evolution. Chem. Eng. J. 2021, 421, 127807.
Han, X.; Gerke, C. S.; Banerjee, S.; Zubair, M.; Jiang, J. J.; Bedford, N. M.; Miller, E. M.; Thoi, V. S. Strategic design of MoO2 nanoparticles supported by carbon nanowires for enhanced electrocatalytic nitrogen reduction. ACS Energy Lett. 2020, 5, 3237–3243.
Liu, M. Z.; Yang, Y.; Luan, X. B.; Dai, X. P.; Zhang, X.; Yong, J. X.; Qiao, H. Y.; Zhao, H. H.; Song, W. Y.; Huang, X. L. Interface-synergistically enhanced acidic, neutral, and alkaline hydrogen evolution reaction over Mo2C/MoO2 heteronanorods. ACS Sustain. Chem. Eng. 2018, 6, 14356–14364.
Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Zhu, Y. Q.; Wang, Y.; Dong, J. C.; Tian, S. B.; Cheong, W. C. et al. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 16086–16090.
Hu, Z. N.; Liang, J. X.; Ding, K. L.; Ai, Y. J.; Liang, Q. L.; Sun, H. B. Insight into the selectivity of nano-catalytic nitroarenes reduction over other active groups by exploring hydrogen sources and metal components. Appl. Catal. A: Gen. 2021, 626, 118339.
Sheng, Y.; Wang, X. G.; Xing, Z. K.; Chen, X. B.; Zou, X. J.; Lu, X. G. Highly active and chemoselective reduction of halogenated nitroarenes catalyzed by ordered mesoporous carbon supported platinum nanoparticles. ACS Sustain. Chem. Eng. 2019, 7, 8908–8916.
Zhang, C. F.; Lu, J. M.; Li, M. R.; Wang, Y. H.; Zhang, Z.; Chen, H. J.; Wang, F. Transfer hydrogenation of nitroarenes with hydrazine at near-room temperature catalysed by a MoO2 catalyst. Green Chem. 2016, 18, 2435–2442.
Zhou, J. J.; Li, Y. N.; Sun, H. B.; Tang, Z. K.; Qi, L.; Liu, L.; Ai, Y. J.; Li, S.; Shao, Z. X.; Liang, Q. L. Porous silica-encapsulated and magnetically recoverable Rh NPs: A highly efficient, stable and green catalyst for catalytic transfer hydrogenation with “slow-release” of stoichiometric hydrazine in water. Green Chem. 2017, 19, 3400–3407.
Ai, Y. J.; Liu, L.; Zhang, C.; Qi, L.; He, M. Q.; Liang, Z.; Sun, H. B.; Luo, G. A.; Liang, Q. L. Amorphous flowerlike goethite FeOOH hierarchical supraparticles: Superior capability for catalytic hydrogenation of nitroaromatics in water. ACS Appl. Mater. Interfaces 2018, 10, 32180–32191.
Wang, Y. M.; Tian, H. M.; Li, H.; Deng, X. C.; Zhang, Q.; Ai, Y. J.; Sun, Z. J.; Wang, Y.; Liu, L.; Hu, Z.-N. et al. Encapsulating electron-rich Pd NPs with Lewis acidic MOF: Reconciling the electron-preference conflict of the catalyst for cascade condensation via nitro reduction. ACS Appl. Mater. Interfaces 2022, 14, 7949–7961.