AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Determining the contribution of Mo single atoms components in MoO2 nanocatalyst in transfer hydrogenation

Ze-Nan Hu1,2Yongjian Ai3Yan Zhao4Yiming Wang2Kelong Ding2Wenhui Zhang2Rongxiu Guo2Xinyue Zhang2Xiangbin Cai5Ning Wang5Jianshe Hu2Qionglin Liang3Hongyang Liu6Fei Huang6( )Limin Wu4Jiangwei Zhang4( )Hong-bin Sun2( )
School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
Department of Chemistry, Northeastern University, Shenyang 110819, China
MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
Department of Physics and Center for Quantum Materials, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Show Author Information

Graphical Abstract

This work reports a noble metal-like catalyst composed of Mo single atoms (SAs) and MoO2 nanoparticles (NPs) (MoSAs-MoO2@NC), which is an exact model to understand how the SAs contribute to the nanocatalyst. Mo SAs on nitrogen-doped carbon provides the reaction zone for nitro reduction, and MoO2 is the active site for decomposing hydrazine hydrate to produce H*.

Abstract

Nanocatalysts are likely to contain undetected single-atom components, which may have been ignored but have significant effect in catalytic reactions. Herein, we report a catalyst composed of Mo single atoms (SAs) and MoO2 nanoparticles (NPs) (MoSAs-MoO2@NC), which is an exact model to understand how the SAs contribute to the nanocatalyst. Both experimental results and the density functional theory calculations reveal that Mo SAs on nitrogen-doped carbon provides the reaction zone for nitro reduction, while MoO2 is the active site for decomposing hydrazine hydrate to produce H*. Thanks to the synergy between Mo SAs and MoO2 NPs, this catalyst exhibits noble metal-like catalytic activity (100% conversion at 4 min) for the dechlorination-proof transfer hydrogenation. Additionally, the hydrogen migration on the catalyst is verified by the electrochemical tests in the absence of a hydrogen source. This work provides a model for further study on the coexistence of single atoms in nanoparticle catalysts.

Electronic Supplementary Material

Download File(s)
12274_2022_5277_MOESM1_ESM.pdf (5.6 MB)
12274_2022_5277_MOESM2_ESM.pdf (586.6 KB)

References

[1]

Qiao, S. C.; He, Q.; Zhang, P. J.; Zhou, Y. Z.; Chen, S. M.; Song, L.; Wei, S. Q. Synchrotron-radiation spectroscopic identification towards diverse local environments of single-atom catalysts. J. Mater. Chem. A 2022, 10, 5771–5791.

[2]

Qi, R.; Zhu, B. E.; Han, Z. K.; Gao, Y. High-throughput screening of stable single-atom catalysts in CO2 reduction reactions. ACS Catal. 2022, 12, 8269–8278.

[3]
Liu, R.; Gong, Z. C.; Yan, M. M.; Ye, G. L.; Fei, H. L. Aligned porous carbon film with ultralow loadings of Pt single atoms and clusters for high-current-density hydrogen generation. Nano Res., in press, https://doi.org/10.1007/s12274-022-4749-9.
[4]

Jiang, J. C.; Chen, J. C.; Zhao, M. D.; Yu, Q.; Wang, Y. G.; Li, J. Rational design of copper-based single-atom alloy catalysts for electrochemical CO2 reduction. Nano Res. 2022, 15, 7116–7123.

[5]

Fan, L. L.; Wei, X. F.; Li, X. T.; Liu, Z. N.; Li, M. F.; Liu, S.; Kang, Z. X.; Dai, F. N.; Lu, X. Q.; Sun, D. F. Phosphorus-doped iron-nitrogen-carbon catalyst with penta-coordinated single atom sites for efficient oxygen reduction. Nano Res. 2023, 16, 1810–1819.

[6]

Gu, Y.; Xi, B. J.; Tian, W. Z.; Zhang, H.; Fu, Q.; Xiong, S. L. Boosting selective nitrogen reduction via geometric coordination engineering on single-tungsten-atom catalysts. Adv. Mater. 2021, 33, 2100429.

[7]

Li, Y.; Li, J. W.; Huang, J. H.; Chen, J. X.; Kong, Y.; Yang, B.; Li, Z. J.; Lei, L. C.; Chai, G. L.; Wen, Z. H. et al. Boosting electroreduction kinetics of nitrogen to ammonia via tuning electron distribution of single-atomic iron sites. Angew. Chem., Int. Ed. 2021, 60, 9078–9085.

[8]
Lin, L. H.; Wei, F. F.; Jiang, R.; Huang, Y. C.; Lin, S. The role of central heteroatom in electrochemical nitrogen reduction catalyzed by polyoxometalate-supported single-atom catalyst. Nano Res., in press, https://doi.org/10.1007/s12274-022-4800-x.
[9]

Jiang, D.; Yao, Y. G.; Li, T. Y.; Wan, G.; Pereira-Hernández, X. I.; Lu, Y. B.; Tian, J. S.; Khivantsev, K.; Engelhard, M. H.; Sun, C. J. et al. Tailoring the local environment of platinum in single-atom Pt1/CeO2 catalysts for robust low-temperature CO oxidation. Angew. Chem., Int. Ed. 2021, 60, 26054–26062.

[10]

Nie, L.; Mei, D. H.; Xiong, H. F.; Peng, B.; Ren, Z. B.; Hernandez, X. I. P.; DeLariva, A.; Wang, M.; Engelhard, M. H.; Kovarik, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 2017, 358, 1419–1423.

[11]

Doan, T. L. L.; Nguyen, D. C.; Prabhakaran, S.; Kim, D.; Tran, D. T.; Kim, N. H.; Lee, J. H. Single-atom co-decorated MoS2 nanosheets assembled on metal nitride nanorod arrays as an efficient bifunctional electrocatalyst for pH-universal water splitting. Adv. Funct. Mater. 2021, 31, 2100233.

[12]

Song, H. Q.; Wu, M.; Tang, Z. Y.; Tse, J. S.; Yang, B.; Lu, S. Y. Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production. Angew. Chem., Int. Ed. 2021, 60, 7234–7244.

[13]

Jiang, R.; Li, Q.; Zheng, X.; Wang, W. Z.; Wang, S. B.; Xu, Z. M.; Wu, J. B. Metal-organic framework-derived Co nanoparticles and single atoms as efficient electrocatalyst for pH universal hydrogen evolution reaction. Nano Res. 2022, 15, 7917–7924.

[14]

Chen, H.-J.; Yang, Y.-L.; Zou, X.-X.; Shi, X.-L.; Chen, Z.-G. Flexible hollow TiO2@CMS/carbon-fiber van der Waals heterostructures for simulated-solar light photocatalysis and photoelectrocatalysis. J. Mater. Sci. Technol. 2022, 98, 143–150.

[15]

Liu, Z. B.; Huang, F.; Peng, M.; Chen, Y. L.; Cai, X. B.; Wang, L. L.; Hu, Z. A.; Wen, X. D.; Wang, N.; Xiao, D. Q. et al. Tuning the selectivity of catalytic nitriles hydrogenation by structure regulation in atomically dispersed Pd catalysts. Nat. Commun. 2021, 12, 6194.

[16]

Wei, H. S.; Liu, X. Y.; Wang, A. Q.; Zhang, L. L.; Qiao, B. T.; Yang, X. F.; Huang, Y. Q.; Miao, S.; Liu, J. Y.; Zhang, T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.

[17]

Han, L. L.; Liu, X. J.; Chen, J. P.; Lin, R. Q.; Liu, H. X.; Lü, F.; Bak, S.; Liang, Z. X.; Zhao, S. Z.; Stavitski, E. et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 2321–2325.

[18]

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

[19]

Xiong, H. F.; Datye, A. K.; Wang, Y. Thermally stable single-atom heterogeneous catalysts. Adv. Mater. 2021, 33, 2004319.

[20]

Ma, Y. Y.; Yang, T.; Zou, H. Y.; Zang, W. J.; Kou, Z. K.; Mao, L.; Feng, Y. P.; Shen, L.; Pennycook, S. J.; Duan, L. L. et al. Synergizing Mo single atoms and Mo2C nanoparticles on CNTs synchronizes selectivity and activity of electrocatalytic N2 reduction to ammonia. Adv. Mater. 2020, 32, 2002177.

[21]

Kuai, L.; Chen, Z.; Liu, S. J.; Kan, E. J.; Yu, N.; Ren, Y. M.; Fang, C. H.; Li, X. Y.; Li, Y. D.; Geng, B. Y. Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nat. Commun. 2020, 11, 48.

[22]

Downing, R. S.; Kunkeler, P. J.; van Bekkum, H. Catalytic syntheses of aromatic amines. Catal. Today 1997, 37, 121–136.

[23]

Hu, Z. N.; Ai, Y. J.; Liu, L.; Zhou, J. J.; Zhang, G.; Liu, H. Q.; Liu, X. Y.; Liu, Z. B.; Hu, J. S.; Sun, H. B. et al. Hydroxyl assisted rhodium catalyst supported on goethite nanoflower for chemoselective catalytic transfer hydrogenation of fully converted nitrostyrenes. Adv. Synth. Catal. 2019, 361, 3146–3154.

[24]

Hu, Z. A.; Zhou, J. J.; Ai, Y. J.; Liu, L.; Qi, L.; Jiang, R. H.; Bao, H. J.; Wang, J. T.; Hu, J. S.; Sun, H. B. et al. Two dimensional Rh/Fe3O4/g-C3N4-N enabled hydrazine mediated catalytic transfer hydrogenation of nitroaromatics: A predictable catalyst model with adjoining Rh. J. Catal. 2018, 368, 20–30.

[25]

Liu, L.; Zhang, Y.; Qiao, Y. J.; Tan, S. C.; Feng, S. F.; Ma, J.; Liu, Y. H.; Luo, J. B. 2D metal-organic frameworks with square grid structure: A promising new-generation superlubricating material. Nano Today 2021, 40, 101262.

[26]

Ding, K. L.; Hu, Z.-N.; Zhang, W. H.; Liang, J. X.; Wang, Y. M.; Li, H.; Sun, Z. J.; Liang, Q. L.; Sun, H.-B. Bimetallic RhIn/ZIF-8 for the catalyic chemoselective hydrogenation of nitrostyrene: Exploration of natural selectivity of hydrogen sources and enhancing intrinsic selectivity. Micropor. Mesopor. Mater. 2022, 332, 111693.

[27]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[28]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[29]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[30]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[31]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 2010, 132, 154104.

[32]

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

[33]

Han, G. H.; Kim, H.; Kim, J.; Kim, J.; Kim, S. Y.; Ahn, S. H. Micro-nanoporous MoO2@CoMo heterostructure catalyst for hydrogen evolution reaction. Appl. Catal. B: Environ. 2020, 270, 118895.

[34]

Liu, Z.; Zhou, S. F.; Xue, S. J.; Guo, Z.; Li, J.; Qu, K. G.; Cai, W. W. Heterointerface-rich Mo2C/MoO2 porous nanorod enables superior alkaline hydrogen evolution. Chem. Eng. J. 2021, 421, 127807.

[35]

Han, X.; Gerke, C. S.; Banerjee, S.; Zubair, M.; Jiang, J. J.; Bedford, N. M.; Miller, E. M.; Thoi, V. S. Strategic design of MoO2 nanoparticles supported by carbon nanowires for enhanced electrocatalytic nitrogen reduction. ACS Energy Lett. 2020, 5, 3237–3243.

[36]

Liu, M. Z.; Yang, Y.; Luan, X. B.; Dai, X. P.; Zhang, X.; Yong, J. X.; Qiao, H. Y.; Zhao, H. H.; Song, W. Y.; Huang, X. L. Interface-synergistically enhanced acidic, neutral, and alkaline hydrogen evolution reaction over Mo2C/MoO2 heteronanorods. ACS Sustain. Chem. Eng. 2018, 6, 14356–14364.

[37]

Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Zhu, Y. Q.; Wang, Y.; Dong, J. C.; Tian, S. B.; Cheong, W. C. et al. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 16086–16090.

[38]

Hu, Z. N.; Liang, J. X.; Ding, K. L.; Ai, Y. J.; Liang, Q. L.; Sun, H. B. Insight into the selectivity of nano-catalytic nitroarenes reduction over other active groups by exploring hydrogen sources and metal components. Appl. Catal. A: Gen. 2021, 626, 118339.

[39]

Sheng, Y.; Wang, X. G.; Xing, Z. K.; Chen, X. B.; Zou, X. J.; Lu, X. G. Highly active and chemoselective reduction of halogenated nitroarenes catalyzed by ordered mesoporous carbon supported platinum nanoparticles. ACS Sustain. Chem. Eng. 2019, 7, 8908–8916.

[40]

Zhang, C. F.; Lu, J. M.; Li, M. R.; Wang, Y. H.; Zhang, Z.; Chen, H. J.; Wang, F. Transfer hydrogenation of nitroarenes with hydrazine at near-room temperature catalysed by a MoO2 catalyst. Green Chem. 2016, 18, 2435–2442.

[41]

Zhou, J. J.; Li, Y. N.; Sun, H. B.; Tang, Z. K.; Qi, L.; Liu, L.; Ai, Y. J.; Li, S.; Shao, Z. X.; Liang, Q. L. Porous silica-encapsulated and magnetically recoverable Rh NPs: A highly efficient, stable and green catalyst for catalytic transfer hydrogenation with “slow-release” of stoichiometric hydrazine in water. Green Chem. 2017, 19, 3400–3407.

[42]

Ai, Y. J.; Liu, L.; Zhang, C.; Qi, L.; He, M. Q.; Liang, Z.; Sun, H. B.; Luo, G. A.; Liang, Q. L. Amorphous flowerlike goethite FeOOH hierarchical supraparticles: Superior capability for catalytic hydrogenation of nitroaromatics in water. ACS Appl. Mater. Interfaces 2018, 10, 32180–32191.

[43]

Wang, Y. M.; Tian, H. M.; Li, H.; Deng, X. C.; Zhang, Q.; Ai, Y. J.; Sun, Z. J.; Wang, Y.; Liu, L.; Hu, Z.-N. et al. Encapsulating electron-rich Pd NPs with Lewis acidic MOF: Reconciling the electron-preference conflict of the catalyst for cascade condensation via nitro reduction. ACS Appl. Mater. Interfaces 2022, 14, 7949–7961.

Nano Research
Pages 2302-2310
Cite this article:
Hu Z-N, Ai Y, Zhao Y, et al. Determining the contribution of Mo single atoms components in MoO2 nanocatalyst in transfer hydrogenation. Nano Research, 2023, 16(2): 2302-2310. https://doi.org/10.1007/s12274-022-5277-3
Topics:

743

Views

8

Crossref

7

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 27 October 2022
Accepted: 28 October 2022
Published: 27 October 2022
© Tsinghua University Press 2022
Return