AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Crystalline BC2N quantum dots

Pengyu ZhangChuang HouWei ShaoRunsheng LiuZitong WuGuoan Tai( )
The State Key Laboratory of Mechanics and Control of Mechanical Structures and Laboratory of Intelligent Nano Materials and Devices of Ministry of Education, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Show Author Information

Graphical Abstract

Crystalline BC2N quantum dots (QDs) have been successfully synthesized by in-situ two-step thermal decomposition of sodium cyanoborohydride. The as-prepared BC2N QDs have good crystallinity and high yield. In addition, the BC2N QDs are a semiconductor with an optical band gap of 2.15 eV. A typical BC2N QDs-based nonvolatile memory shows a low SET operating voltage and a high ON/OFF ratio as well as good stability.

Abstract

Ternary materials composed of boron, carbon, and nitrogen have drawn tremendous attention because of their suitable band gap, high carrier mobility, and high thermal conductivity. The properties can effectively compensate for the deficiencies of other typical carbon-based and boron-based materials, such as graphene, borophene, and hexagonal boron nitride. Although the theoretical progress has advanced the development of ternary materials, it is still a great challenge to synthesize the new nanostructures with good crystallinity and high yield at low dimensional scales. Herein, we report that BC2N quantum dots (QDs) can be successfully prepared by in-situ two-step thermal decomposition of sodium cyanoborohydride in a hydrogen-rich environment. The results show that the as-prepared BC2N QDs have good crystallinity and high yield. The BC2N QDs have an average lateral size of 3.7 nm and an average thickness of 2.83 nm. The experimental results show that the QDs are semiconducting with an optical band gap of 2.15 eV. Furthermore, a fabricated BC2N QDs-based nonvolatile memory shows a low SET operating voltage (0.74 V) and a high ON/OFF ratio (more than 1.74 × 103) as well as good stability.

Electronic Supplementary Material

Download File(s)
12274_2022_5284_MOESM1_ESM.pdf (1.8 MB)

References

[1]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science, 2004, 306, 666–669.

[2]

Geim, A. K. Graphene: Status and prospects. Science, 2009, 324, 1530–1534.

[3]

Tai, G. A.; Hu, T. S.; Zhou, Y. G.; Wang, X. F.; Kong, J. Z.; Zeng, T.; You, Y. C.; Wang, Q. Synthesis of atomically thin boron films on copper foils. Angew. Chem.; Int. Ed. 2015, 54, 15473–15477.

[4]

Mannix, A. J.; Zhou, X. F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X. L.; Fisher, B. L.; Santiago, U.; Guest, J. R. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513–1516.

[5]

Tran, T. T.; Bray, K.; Ford, M. J.; Toth, M.; Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 2016, 11, 37–41.

[6]

Zavabeti, A.; Jannat, A.; Zhong, L.; Haidry, A. A.; Yao, Z. J.; Ou, J. Z. Two-dimensional materials in large-areas: Synthesis, properties and applications. Nano-Micro Lett. 2020, 12, 66.

[7]

Hou, C.; Tai, G. A.; Hao, J. Q.; Sheng, L. H.; Liu, B.; Wu, Z. T. Ultrastable crystalline semiconducting hydrogenated borophene. Angew. Chem., Int. Ed. 2020, 59, 10819–10825.

[8]

Beniwal, S.; Hooper, J.; Miller, D. P.; Costa, P. S.; Chen, G.; Liu, S. Y.; Dowben, P. A.; Sykes, E. C. H.; Zurek, E.; Enders, A. Graphene-like boron-carbon-nitrogen monolayers. ACS Nano 2017, 11, 2486–2493.

[9]

Bafekry, A.; Naseri, M.; Fadlallah, M. M.; Abdolhosseini Sarsari, I.; Faraji, M.; Bagheri Khatibani, A.; Ghergherehchi, M.; Gogova, D. A novel two-dimensional boron-carbon-nitride (BCN) monolayer: A first-principles insight. J. Appl. Phys. 2021, 130, 114301.

[10]

Senturk, A. E. Thermo-mechanical properties of different structures of BC2N. Mol. Simulat. 2021, 47, 1493–1501.

[11]

Liu, A. Y.; Wentzcovitch, R. M.; Cohen, M. L. Atomic arrangement and electronic structure of BC2N. Phys. Rev. B 1989, 39, 1760–1765.

[12]

Song, L.; Liu, Z.; Reddy, A. L. M.; Narayanan, N. T.; Taha-Tijerina, J.; Peng, J.; Gao, G. H.; Lou, J.; Vajtai, R.; Ajayan, P. M. Binary and ternary atomic layers built from carbon, boron, and nitrogen. Adv. Mater. 2012, 24, 4878–4895.

[13]

Kawaguchi, M.; Wakukawa, Y. Synthesis of graphite-like material of composition BC6N by CVD at high temperature. Carbon 1999, 37, 147–149.

[14]

Qin, L.; Yu, J.; Kuang, S.; Xiao, C.; Bai, X. D. Few-atomic-layered boron carbonitride nanosheets prepared by chemical vapor deposition. Nanoscale 2012, 4, 120–123.

[15]

Giusto, P.; Arazoe, H.; Cruz, D.; Lova, P.; Heil, T.; Aida, T.; Antonietti, M. Boron carbon nitride thin films: From disordered to ordered conjugated ternary materials. J. Am. Chem. Soc. 2020, 142, 20883–20891.

[16]

Kim, S. Y.; Park, J.; Choi, H. C.; Ahn, J. P.; Hou, J. Q.; Kang, H. S. X-ray photoelectron spectroscopy and first principles calculation of BCN nanotubes. J. Am. Chem. Soc. 2007, 129, 1705–1716.

[17]

Watanabe, M. O.; Itoh, S.; Sasaki, T.; Mizushima, K. Visible-light-emitting layered BC2N Semiconductor. Phys. Rev. Lett. 1996, 77, 187–189.

[18]

Ci, L.; Song, L.; Jin, C. H.; Jariwala, D.; Wu, D. X.; Li, Y. J.; Srivastava, A.; Wang, Z. F.; Storr, K.; Balicas, L. et al. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 2010, 9, 430–435.

[19]

Guo, F. S.; Yang, P. J.; Pan, Z. M.; Cao, X. N.; Xie, Z. L.; Wang, X. C. Carbon-doped BN nanosheets for the oxidative dehydrogenation of ethylbenzene. Angew. Chem., Int. Ed. 2017, 56, 8231–8235.

[20]

Seo, T. H.; Lee, W.; Lee, K. S.; Hwang, J. Y.; Son, D. I.; Ahn, S.; Cho, H.; Kim, M. J. Dominant formation of h-BC2N in h-BxCyNz films: CVD synthesis and characterization. Carbon 2021, 182, 791–798.

[21]

Zhang, X.; Xie, H. M.; Liu, Z. D.; Tan, C. L.; Luo, Z. M.; Li, H.; Lin, J. D.; Sun, L. Q.; Chen, W.; Xu, Z. C. et al. Black phosphorus quantum dots. Angew. Chem., Int. Ed. 2015, 54, 3653–3657.

[22]

Liu, M. L.; Xu, Y. H.; Wang, Y.; Chen, X.; Ji, X. Q.; Niu, F. S.; Song, Z. Q.; Liu, J. Q. Boron nitride quantum dots with solvent-regulated blue/green photoluminescence and electrochemiluminescent behavior for versatile applications. Adv. Opt. Mater. 2017, 5, 1600661.

[23]

Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163.

[24]

Li, Z. W.; Ye, R. Q.; Feng, R.; Kang, Y. M.; Zhu, X.; Tour, J. M.; Fang, Z. Y. Graphene quantum dots doping of MoS2 Monolayers. Adv. Mater. 2015, 27, 5235–5240.

[25]

Lu, L. Q.; Zhu, Y. C.; Shi, C.; Pei, Y. T. Large-scale synthesis of defect-selective graphene quantum dots by ultrasonic-assisted liquid-phase exfoliation. Carbon 2016, 109, 373–383.

[26]

Hao, J. Q.; Tai, G. A.; Zhou, J. X.; Wang, R.; Hou, C.; Guo, W. L. Crystalline semiconductor boron quantum dots. ACS Appl. Mater. Interfaces 2020, 12, 17669–17675.

[27]

Li, B.; Li, Z.; Wu, X.; Zhu, Z. L. Interface functionalization in inverted perovskite solar cells: From material perspective. Nano Res. Energy 2022, 1, e9120011.

[28]

Zeng, J.; Bi, L. Y.; Cheng, Y. H.; Xu, B. M.; Jen, A. K. Y. Self-assembled monolayer enabling improved buried interfaces in blade-coated perovskite solar cells for high efficiency and stability. Nano Res. Energy 2022, 1, e9120004.

[29]

Cao, S.; Yang, M.; You, Q.; Shi, L. B.; Qian, P. Theoretical evaluation of intrinsic mobility for two-dimensional semiconductor of BC2N: First-principles calculation. Phys. E 2020, 120, 114062.

[30]

Xie, J. F.; Zhang, Z. Y.; Yang, D. Z.; Xue, D. S.; Si, M. S. Theoretical prediction of carrier mobility in few-layer BC2N. J. Phys. Chem. Lett. 2014, 5, 4073–4077.

[31]

Lu, P.; Zhang, Z. H.; Guo, W. L. Electronic structures of BC2N nanoribbons. J. Phys. Chem. C 2011, 115, 3572–3577.

[32]

Huang, C. J.; Chen, C.; Zhang, M. W.; Lin, L. H.; Ye, X. X.; Lin, S.; Antonietti, M.; Wang, X. C. Carbon-doped BN nanosheets for metal-free photoredox catalysis. Nat. Commun. 2015, 6, 7698.

[33]

Wang, Y.; Chen, G.; Weng, H. Q.; Wang, L.; Chen, J. L.; Cheng, S.; Zhang, P.; Wang, M. Z.; Ge, X. W.; Chen, H. B. et al. Carbon-doped boron nitride nanosheets with adjustable band structure for efficient photocatalytic U(VI) reduction under visible light. Chem. Eng. J. 2021, 410, 128280.

[34]

Zhou, M.; Wang, S. B.; Yang, P. J.; Huang, C. J.; Wang, X. C. Boron carbon nitride semiconductors decorated with CdS nanoparticles for photocatalytic reduction of CO2. ACS Catal. 2018, 8, 4928–4936.

[35]

Fan, M. M.; Wu, J. J.; Yuan, J. T.; Deng, L. Z.; Zhong, N.; He, L.; Cui, J. W.; Wang, Z. X.; Behera, S. K.; Zhang, C. H. et al. Doping nanoscale graphene domains improves magnetism in hexagonal boron nitride. Adv. Mater. 2019, 31, 1805778.

[36]

Portehault, D.; Giordano, C.; Gervais, C.; Senkovska, I.; Kaskel, S.; Sanchez, C.; Antonietti, M. High-surface-area nanoporous boron carbon nitrides for hydrogen storage. Adv. Funct. Mater. 2010, 20, 1827–1833.

[37]

Lei, W. W.; Portehault, D.; Dimova, R.; Antonietti, M. Boron carbon nitride nanostructures from salt melts: Tunable water-soluble phosphors. J. Am. Chem. Soc. 2011, 133, 7121–7127.

[38]

Kumar, R.; Gopalakrishnan, K.; Ahmad, I.; Rao, C. N. R. BN−graphene composites generated by covalent cross-linking with organic linkers. Adv. Funct. Mater. 2015, 25, 5910–5917.

[39]

Chhetri, M.; Maitra, S.; Chakraborty, H.; Waghmare, U. V.; Rao, C. N. R. Superior performance of borocarbonitrides, BxCyNz, as stable, low-cost metal-free electrocatalysts for the hydrogen evolution reaction. Energy Environ. Sci. 2016, 9, 95–101.

[40]

Gong, Y. J.; Shi, G.; Zhang, Z. H.; Zhou, W.; Jung, J.; Gao, W. L.; Ma, L. L.; Yang, Y.; Yang, S. B.; You, G. et al. Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers. Nat. Commun. 2014, 5, 3193.

[41]

Loeblein, M.; Tay, R. Y.; Tsang, S. H.; Ng, W. B.; Teo, E. H. T. Configurable three-dimensional boron nitride-carbon architecture and its tunable electronic behavior with stable thermal performances. Small 2014, 10, 2992–2999.

[42]

Shafique, A.; Shin, Y. H. Ultrahigh and anisotropic thermal transport in the hybridized monolayer (BC2N) of boron nitride and graphene: A first-principles study. Phys. Chem. Chem. Phys. 2019, 21, 17306–17313.

[43]

Shao, W.; Tai, G. A.; Hou, C.; Wu, Z. H.; Wu, Z. T.; Liang, X. C. Borophene-functionalized magnetic nanoparticles: Synthesis and memory device application. ACS Appl. Electron. Mater. 2021, 3, 1133–1141.

[44]

Paul, S.; Kanwal, A.; Chhowalla, M. Memory effect in thin films of insulating polymer and C60 nanocomposites. Nanotechnology 2006, 17, 145–151.

[45]

Liu, J. Q.; Zeng, Z. Y.; Cao, X. H.; Lu, G.; Wang, L. H.; Fan, Q. L.; Huang, W.; Zhang, H. Preparation of MoS2-polyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes. Small 2012, 8, 3517–3522.

[46]

Zhuang, X. D.; Chen, Y.; Liu, G.; Li, P. P.; Zhu, C. X.; Kang, E. T.; Noeh, K. G.; Zhang, B.; Zhu, J. H.; Li, Y. X. Conjugated-polymer-functionalized graphene oxide: Synthesis and nonvolatile rewritable memory effect. Adv. Mater. 2010, 22, 1731–1735.

[47]

Liu, G.; Ling, Q. D.; Teo, E. Y. H.; Zhu, C. X.; Chan, D. S. H.; Neoh, K. G.; Kang, E. T. Electrical conductance tuning and bistable switching in poly (N-vinylcarbazole)-carbon nanotube composite films. ACS Nano 2009, 3, 1929–1937.

[48]

Lin, C. W.; Pan, T. S.; Chen, M. C.; Yang, Y. J.; Tai, Y.; Chen, Y. F. Organic bistable memory based on Au nanoparticle/ZnO nanorods composite embedded in poly(vinylpyrrolidone) layer. Appl. Phys. Lett. 2011, 99, 023303.

[49]

Zhang, H. Y.; Zhao, X. F.; Huang, J. H.; Bai, J.; Hou, Y. J.; Wang, C.; Wang, S. H.; Bai, X. D. Bistable non-volatile resistive memory devices based on ZnO nanoparticles embedded in polyvinylpyrrolidone. RSC Adv. 2020, 10, 14662–14669.

Nano Research
Pages 7837-7843
Cite this article:
Zhang P, Hou C, Shao W, et al. Crystalline BC2N quantum dots. Nano Research, 2023, 16(5): 7837-7843. https://doi.org/10.1007/s12274-022-5284-4
Topics:

3572

Views

7

Crossref

6

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 02 September 2022
Revised: 27 October 2022
Accepted: 01 November 2022
Published: 29 November 2022
© Tsinghua University Press 2022
Return