Graphical Abstract

The edge S sites of thermodynamically stable 2H MoS2 are active for hydrogen evolution reaction (HER) but the active sites are scarce. Despite the dominance of the basal S sites, they are generally inert to HER because of the low p-band center. Herein, we reported a synergistic combination of phase engineering and NH4+ intercalation to promote the HER performance of MoS2. The rational combination of 1T and 2H phases raises the p-band center of the basal S sites while the intercalated NH4+ ions further optimize and stabilize the electronic band of these sites. The S sites with regulated band structures afford moderate hydrogen adsorption, thus contributing to excellent HER performance over a wide pH range. In an acid medium, this catalyst exhibits a low overpotential of 169 mV at 10 mA·cm−2 and Tafel slope of 39 mV·dec−1 with robust stability, superior to most of recently reported MoS2-based non-noble catalysts. The combined use of in/ex-situ characterizations ravels that the appearance of more unpaired electrons at the Mo 4d-orbital reduces the d-band center which upshifts the p-band center of the adjacent S for essentially improved HER performance. This work provides guidelines for the future development of layered transition-metal-dichalcogenide catalysts.
Han, A. L.; Zhou, X. F.; Wang, X. J.; Liu, S.; Xiong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.
Cai, C.; Liu, K.; Zhu, Y. M.; Li, P. C.; Wang, Q. Y.; Liu, B.; Chen, S. Y.; Li, H. J. W.; Zhu, L.; Li, H. M. et al. Optimizing hydrogen binding on Ru sites with RuCo alloy nanosheets for efficient alkaline hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, 202113664.
Li, Z. H.; Li, X. F.; Zhou, H.; Xu, Y.; Xu, S. M.; Ren, Y.; Yan, Y. F.; Yang, J. R.; Ji, K. Y.; Li, L. et al. Electrocatalytic synthesis of adipic acid coupled with H2 production enhanced by a ligand modification strategy. Nat. Commun. 2022, 13, 5009.
Liu, H.; Zhang, Z.; Li, M. X.; Wang, Z. L.; Zhang, X. H.; Li, T. S.; Li, Y. P.; Tian, S. B.; Kuang, Y.; Sun, X. M. Iridium doped pyrochlore ruthenates for efficient and durable electrocatalytic oxygen evolution in acidic media. Small 2022, 18, 2202513.
Zuo, S. W.; Wu, Z. P.; Zhang, H. B.; Lou, X. W. Operando monitoring and deciphering the structural evolution in oxygen evolution electrocatalysis. Adv. Energy Mater. 2022, 12, 2103383.
Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.
Li, P. S.; Duan, X. X.; Kuang, Y.; Sun, X. M. Iridium in tungsten trioxide matrix as an efficient Bi-functional electrocatalyst for overall water splitting in acidic media. Small 2021, 17, 2102078.
Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.
Qin, J. Y.; Xi, C.; Zhang, R.; Liu, T.; Zou, P. C.; Wu, D. Y.; Guo, Q. J.; Mao, J.; Xin, H. L.; Yang, J. Activating edge-Mo of 2H-MoS2 via coordination with pyridinic N-C for pH-universal hydrogen evolution electrocatalysis. ACS Catal. 2021, 11, 4486–4497.
Meng, X. Y.; Ma, C.; Jiang, L. Z.; Si, R.; Meng, X. G.; Tu, Y. C.; Yu, L.; Bao, X. H.; Deng, D. H. Distance synergy of MoS2-confined rhodium atoms for highly efficient hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 10502–10507.
Huang, X. L.; Leng, M.; Xiao, W.; Li, M.; Ding, J.; Tan, T. L.; Lee, W. S. V.; Xue, J. M. Activating basal planes and S-terminated edges of MoS2 toward more efficient hydrogen evolution. Adv. Funct. Mater. 2017, 27, 1604943.
Geng, S.; Tian, F. Y.; Li, M. G.; Liu, Y. Q.; Sheng, J.; Yang, W. W.; Yu, Y. S.; Hou, Y. L. Activating interfacial S sites of MoS2 boosts hydrogen evolution electrocatalysis. Nano Res. 2021, 15, 1809–1816.
Niu, S. W.; Cai, J. Y.; Wang, G. M. Two-dimensional MoS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. Nano Res. 2020, 14, 1985–2002.
Meng, C.; Lin, M. C.; Du, X. W.; Zhou, Y. Molybdenum disulfide modified by laser irradiation for catalyzing hydrogen evolution. ACS Sustain. Chem. Eng. 2019, 7, 6999–7003.
Tsai, C.; Li, H.; Park, S.; Park, J.; Han, H. S.; Nørskov, J. K.; Zheng, X. L.; Abild-Pedersen, F. Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution. Nat. Commun. 2017, 8, 15113.
Wu, X.; Zhang, H. B.; Zuo, S. W.; Dong, J. C.; Li, Y.; Zhang, J.; Han, Y. Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nano-Micro Lett. 2021, 13, 136.
Wang, Y. C.; Ren, B. Y.; Ou, J. Z.; Xu, K.; Yang, C. H.; Li, Y. X.; Zhang, H. J. Engineering two-dimensional metal oxides and chalcogenides for enhanced electro- and photocatalysis. Sci. Bull. 2021, 66, 1228–1252.
Wang, J. S.; Zhang, Z. F.; Song, H. R.; Zhang, B.; Liu, J.; Shai, X. X.; Miao, L. Water dissociation kinetic-oriented design of nickel sulfides via tailored dual sites for efficient alkaline hydrogen evolution. Adv. Funct. Mater. 2021, 31, 2008578.
Liu, X.; Ni, K.; Niu, C. J.; Guo, R. T.; Xi, W.; Wang, Z. Y.; Meng, J. S.; Li, J. T.; Zhu, Y. W.; Wu, P. J. et al. Upraising the O 2p orbital by integrating Ni with MoO2 for accelerating hydrogen evolution kinetics. ACS Catal. 2019, 9, 2275–2285.
Sun, Q.; Dai, Z. Y.; Zhang, Z. B.; Chen, Z. L.; Lin, H. Q.; Gao, Y.; Chen, D. J. Double perovskite PrBaCo2O5.5: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Power Sources 2019, 427, 194–200.
Xie, Z. J.; Huang, X.; Zhang, Z.; Xu, H. Identification of electronic descriptors for catalytic activity of transition-metal and non-metal doped MoS2. Phys. Chem. Chem. Phys. 2021, 23, 15101–15106.
Liu, M. J.; Hybertsen, M. S.; Wu, Q. A physical model for understanding the activation of MoS2 basal-plane sulfur atoms for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 14835–14841.
Liu, P. T.; Zhu, J. Y.; Zhang, J. Y.; Tao, K.; Gao, D. Q.; Xi, P. X. Active basal plane catalytic activity and conductivity in Zn doped MoS2 nanosheets for efficient hydrogen evolution. Electrochim. Acta 2018, 260, 24–30.
Xu, L. N.; Zhang, Y. H.; Feng, L. L.; Li, X.; Cui, Y. Y.; An, Q. Active basal plane catalytic activity via interfacial engineering for a finely tunable conducting polymer/MoS2 hydrogen evolution reaction multilayer structure. ACS Appl. Mater. Interfaces 2021, 13, 734–744.
Maiti, P. S.; Ganai, A. K.; Bar-Ziv, R.; Enyashin, A. N.; Houben, L.; Bar Sadan, M. Cu2−xS-MoS2 nano-octahedra at the atomic scale: Using a template to activate the basal plane of MoS2 for hydrogen production. Chem. Mater. 2018, 30, 4489–4492.
He, H. N.; Li, X. L.; Huang, D.; Luan, J. Y.; Liu, S. L.; Pang, W. K.; Sun, D.; Tang, Y. G.; Zhou, W. Z.; He, L. R. et al. Electron-injection-engineering induced phase transition toward stabilized 1T-MoS2 with extraordinary sodium storage performance. ACS Nano 2021, 15, 8896–8906.
Tong, X.; Li, Y.; Ruan, Q. D.; Pang, N.; Zhou, Y.; Wu, D. J.; Xiong, D. Y.; Xu, S. H.; Wang, L. W.; Chu, P. K. Plasma engineering of basal sulfur sites on MoS2@Ni3S2 nanorods for the alkaline hydrogen evolution reaction. Adv. Sci. 2022, 9, 2104774.
Li, G. W.; Huang, J.; Yang, Q.; Zhang, L. G.; Mu, Q. G.; Sun, Y.; Parkin, S.; Chang, K.; Felser, C. MoS2 on topological insulator Bi2Te3 thin films: Activation of the basal plane for hydrogen reduction. J. Energy Chem. 2021, 62, 516–522.
Luo, Z. Y.; Li, J. J.; Li, Y. L.; Wu, D. J.; Zhang, L.; Ren, X. Z.; He, C. X.; Zhang, Q. L.; Gu, M.; Sun, X. L. Band engineering induced conducting 2H-phase MoS2 by Pd-S-Re sites modification for hydrogen evolution reaction. Adv. Energy Mater. 2022, 12, 2103823.
Geng, X. M.; Sun, W. W.; Wu, W.; Chen, B.; Al-Hilo, A.; Benamara, M.; Zhu, H. L.; Watanabe, F.; Cui, J. B.; Chen, T. P. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat. Commun. 2016, 7, 10672.
Jiménez Sandoval, S.; Yang, D.; Frindt, R. F.; Irwin, J. C. Raman study and lattice dynamics of single molecular layers of MoS2. Phys. Rev. B 1991, 44, 3955–3962.
Lu, J.; Wang, H.; Sun, Y. X.; Wang, X. Y.; Song, X. M.; Wang, R. F. Charge state manipulation induced through cation intercalation into MnO2 sheet arrays for efficient water splitting. Chem. Eng. J. 2021, 417, 127894.
Al-Temimy, A.; Prenger, K.; Golnak, R.; Lounasvuori, M.; Naguib, M.; Petit, T. Impact of cation intercalation on the electronic structure of Ti3C2Tx MXenes in sulfuric acid. ACS Appl. Mater. Interfaces 2020, 12, 15087–15094.
Chen, X.; Liu, Y. Q.; Gao, W. C.; Yang, G.; Qureshi, A. H.; Chen, M.; Yao, X. J.; Zhou, M.; Zhang, X. Y.; Liu, Y. J. High electrocatalytic activity of defected MX2/graphene heterostructures (M = Mo, W; X = S, Se) for hydrogen evolution reaction. J. Phys. Chem. C 2021, 125, 15292–15300.
Wang, L. C.; Gao, W. C.; Chen, X.; Liu, Y. Q.; Qureshi, A. H.; Liu, Y. J.; Chen, M.; Zhang, X. Y.; Guo, Y. L.; Wang, J. L. Charge-modulated VS2 monolayer for effective hydrogen evolution reaction. J. Phys. Chem. C 2021, 125, 12004–12011.
Ali, H.; Golnak, R.; Seidel, R.; Winter, B.; Xiao, J. In-situ X-ray spectroscopy of the electric double layer around TiO2 nanoparticles dispersed in aqueous solution: Implications for H2 generation. ACS Appl. Nano Mater. 2020, 3, 264–273.
Singh, Y. D.; Mahanta, P.; Bora, U. Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production. Renew. Energy 2017, 103, 490–500.
Tan, S.; Shi, J. J.; Yu, B. C.; Zhao, W. Y.; Li, Y. S.; Li, Y. M.; Wu, H. J.; Luo, Y. H.; Li, D. M.; Meng, Q. B. Inorganic ammonium halide additive strategy for highly efficient and stable CsPbI3 perovskite solar cells. Adv. Funct. Mater. 2021, 31, 2010813.
Wang, D. Z.; Zhang, X. Y.; Bao, S. Y.; Zhang, Z. T.; Fei, H.; Wu, Z. Z. Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution. J. Mater. Chem. A 2017, 5, 2681–2688.
Gong, S.; Zhao, G. Y.; Lyu, P. B.; Sun, K. N. Insights into the intrinsic capacity of interlayer-expanded MoS2 as a Li-ion intercalation host. J. Mater. Chem. A 2019, 7, 1187–1195.
Wu, C. Q.; Fang, Q.; Liu, Q.; Liu, D. B.; Wang, C. D.; Xiang, T.; Khalil, A.; Chen, S. M.; Song, L. Engineering interfacial charge-transfer by phase transition realizing enhanced photocatalytic hydrogen evolution activity. Inorg. Chem. Front. 2017, 4, 663–667.
Zhu, J. Q.; Wang, Z. C.; Yu, H.; Li, N.; Zhang, J.; Meng, J. L.; Liao, M. Z.; Zhao, J.; Lu, X. B.; Du, L. J. et al. Argon plasma induced phase transition in monolayer MoS2. J. Am. Chem. Soc. 2017, 139, 10216–10219.
Li, Y.; Zuo, S. W.; Li, Q. H.; Wu, X.; Zhang, J.; Zhang, H. B.; Zhang, J. Vertically aligned MoS2 with in-plane selectively cleaved Mo–S bond for hydrogen production. Nano Lett. 2021, 21, 1848–1855.
Sun, B.; Shi, T. L.; Liu, Z. Y.; Wu, Y. N.; Zhou, J. X.; Liao, G. L. Large-area flexible photodetector based on atomically thin MoS2/graphene film. Mater. Des. 2018, 154, 1–7.
Shang, B.; Cui, X. Q.; Jiao, L.; Qi, K.; Wang, Y. W.; Fan, J. C.; Yue, Y. Y.; Wang, H. Y.; Bao, Q. L.; Fan, X. F. et al. Lattice-mismatch-induced ultrastable 1T-Phase MoS2-Pd/Au for plasmon-enhanced hydrogen evolution. Nano Lett. 2019, 19, 2758–2764.
Lin, X. Y.; Wang, J.; Chu, Z. Y.; Liu, D. Q.; Guo, T. T.; Yang, L. N.; Huang, Z. Y.; Mu, S. T.; Li, S. The optimization of hydrothermal process of MoS2 nanosheets and their good microwave absorption performances. Chin. Chem. Lett. 2020, 31, 1124–1128.
Cheng, Z. H.; Xiao, Y. K.; Wu, W. P.; Zhang, X. Q.; Fu, Q.; Zhao, Y.; Qu, L. T. All-pH-tolerant in-plane heterostructures for efficient hydrogen evolution reaction. ACS Nano 2021, 15, 11417–11427.
Zhang, G.; Liu, H. J.; Qu, J. H.; Li, J. H. Two-dimensional layered MoS2: Rational design, properties and electrochemical applications. Energy Environ. Sci. 2016, 9, 1190–1209.
Liu, M. M.; Li, H. X.; Liu, S. J.; Wang, L. L.; Xie, L. B.; Zhuang, Z. C.; Sun, C.; Wang, J.; Tang, M.; Sun, S. J. et al. Tailoring activation sites of metastable distorted 1T'-phase MoS2 by Ni doping for enhanced hydrogen evolution. Nano Res. 2022, 15, 5946–5952.
Wang, W.; Wu, Y. X.; Lin, Y. X.; Yao, J. X.; Wu, X. S.; Wu, C. Q.; Zuo, X. Q.; Yang, Q.; Ge, B. H.; Yang, L. et al. Confining zero-valent platinum single atoms in α-MoC1−x for pH-universal hydrogen evolution reaction. Adv. Funct. Mater. 2022, 32, 2108464.
Attanayake, N. H.; Thenuwara, A. C.; Patra, A.; Aulin, Y. V.; Tran, T. M.; Chakraborty, H.; Borguet, E.; Klein, M. L.; Perdew, J. P.; Strongin, D. R. Effect of intercalated metals on the electrocatalytic activity of 1T-MoS2 for the hydrogen evolution reaction. ACS Energy Lett. 2018, 3, 7–13.
Chen, Y.; Zhang, G.; Ji, Q. H.; Liu, H. J.; Qu, J. H. Triggering of low-valence molybdenum in multiphasic MoS2 for effective reactive oxygen species output in catalytic fenton-like reactions. ACS Appl. Mater. Interfaces 2019, 11, 26781–26788.
Li, H. Y.; Jia, X. F.; Zhang, Q.; Wang, X. Metallic transition-metal dichalcogenide nanocatalysts for energy conversion. Chem 2018, 4, 1510–1537.
Liu, L.; Yang, W. J.; Chen, H. D.; Chen, X. T.; Zhang, K. Q.; Zeng, Q.; Lei, S. L.; Huang, J. J.; Li, S. J.; Peng, S. L. High zinc-ion intercalation reaction activity of MoS2 cathode based on regulation of thermodynamic metastability and interlayer water. Electrochim. Acta 2022, 410, 140016.
Sharma, S. K.; Porter, J. N.; Misra, A. K.; Acosta-Maeda, T. E.; Angel, S. M.; McKay, C. P. Standoff Raman spectroscopy for future Europa Lander missions. J. Raman Spectrosc. 2020, 51, 1782–1793.
Chen, J. Z.; Liu, G. G.; Zhu, Y. Z.; Su, M.; Yin, P. F.; Wu, X. J.; Lu, Q. P.; Tan, C. L.; Zhao, M. T.; Liu, Z. Q. et al. Ag@MoS2 core–shell heterostructure as SERS platform to reveal the hydrogen evolution active sites of single-layer MoS2. J. Am. Chem. Soc. 2020, 142, 7161–7167.