AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Boosted electromagnetic wave absorption performance from synergistic induced polarization of SiCNWs@MnO2@PPy heterostructures

Meng Zhang1,§Laibin Zhao1,§Wenxin Zhao1Ting Wang2Liying Yuan1Yuying Guo1Yuxin Xie1Tingting Cheng1Alan Meng2Zhenjiang Li1( )
College of Electromechanical Engineering, Key Laboratory of Polymer Material Advanced Manufacturing’s Technology of Shandong province, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Gaomi Campus, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

§ Meng Zhang and Laibin Zhao contributed equally to this work.

Show Author Information

Graphical Abstract

A novel heterojunction composed of SiC nanowires core, MnO2 nanosheets inter-layer and polypyrrole (PPy) coating was successfully constructed, who exhibits excellent electromagnetic wave absorption performance.

Abstract

In the last decade, electromagnetic pollution has caused people’s considerable attention. Developing absorbing material with low cost, lightweight, simple preparation, and high electromagnetic attenuation efficiency has become a feasible means to deal with this problem. In this work, core–shell SiCNWs@MnO2@PPy (NWs: nanowires, PPy: polypyrrole) heterostructures composed of SiC nanowires core, MnO2 nanosheets inter-layer, and PPy coating were successfully prepared through chemical vapor deposition and two-step electrodeposition process. Taking advantage of the interfacial polarization and dipole polarization, the obtained product displays excellent electromagnetic wave absorption performances with the minimum reflection loss (RLmin) of −50.59 dB when the matching thickness is 2.41 mm, and the optimal effective absorption bandwidth (EAB) value reaches to 6.64 GHz at a matching thickness of 2.46 mm, revealing that the SiCNWs@MnO2@PPy nanocomposite could be served as a promising electromagnetic wave absorbing material. On the basis of systematic analysis concerning the electromagnetic parameters, the dissipation process of the incident electromagnetic wave was demonstrated reasonably, which may provide a referable preparation strategy for novel heterostructures, especially nonmagnetic lightweight absorbing material.

Electronic Supplementary Material

Download File(s)
12274_2022_5289_MOESM1_ESM.pdf (757.2 KB)

References

[1]

Zhang, M.; Ling, H. L.; Wang, T.; Jiang, Y. J.; Song, G. Y.; Zhao, W.; Zhao, L. B.; Cheng, T. T.; Xie, Y. X.; Guo, Y. Y. et al. An equivalent substitute strategy for constructing 3D ordered porous carbon foams and their electromagnetic attenuation mechanism. Nano-Micro Lett. 2022, 14, 157.

[2]

Zhao, H. H.; Wang, F. Y.; Cui, L. R.; Xu, X. Z.; Han, X. J.; Du, Y. C. Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: A review. Nano-Micro Lett. 2021, 13, 208.

[3]

Liang, L. Y.; Yao, C.; Yan, X.; Feng, Y. Z.; Hao, X.; Zhou, B.; Wang, Y. M.; Ma, J. M.; Liu, C. T.; Shen, C. Y. High-efficiency electromagnetic interference shielding capability of magnetic Ti3C2Tx MXene/CNT composite film. J. Mater. Chem. A 2021, 9, 24560–24570.

[4]

Shu, R. W.; Li, X. H.; Tian, K. H.; Shi, J. J. Fabrication of bimetallic metal–organic frameworks derived Fe3O4/C decorated graphene composites as high-efficiency and broadband microwave absorbers. Compos. B Eng. 2022, 228, 109423.

[5]

Guan, H. T.; Wang, Q. Y.; Wu, X. F.; Pang, J.; Jiang, Z. Y.; Chen, G.; Dong, C. J.; Wang, L. H.; Gong, C. H. Biomass derived porous carbon (BPC) and their composites as lightweight and efficient microwave absorption materials. Compos. B Eng. 2021, 207, 108562.

[6]

Zhang, M.; Li, Z. J.; Wang, T.; Ding, S. Q.; Song, G. Y.; Zhao, J.; Meng, A. L.; Yu, H. Y.; Li, Q. D. Preparation and electromagnetic wave absorption performance of Fe3Si/SiC@SiO2 nanocomposites. Chem. Eng. J. 2019, 362, 619–627.

[7]

He, J.; Gao, S. T.; Zhang, Y. C.; Zhang, X. Z.; Li, H. X. N-doped residual carbon from coal gasification fine slag decorated with Fe3O4 nanoparticles for electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 104, 98–108.

[8]

Shi, Y. P.; Li, D.; Si, H. X.; Jiang, Z. Y.; Li, M. Y.; Gong, C. H. TiN/BN composite with excellent thermal stability for efficiency microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 2022, 130, 249–255.

[9]

Zhou, B. Z.; Li, C. C.; Zhou, Y. F.; Liu, Z. X.; Gao, X.; Wang, X. Q.; Jiang, L.; Tian, M. W.; Zhou, F. L.; Jerrams, S. et al. A flexible dual-mode pressure sensor with ultra-high sensitivity based on BTO@MWCNTs core–shell nanofibers. Compos. Sci. Technol. 2022, 224, 109478.

[10]

Liu, Z. X.; Li, C. C.; Zhang, X. F.; Zhou, B. Z.; Wen, S. P.; Zhou, Y. F.; Chen, S. J.; Jiang, L.; Jerrams, S.; Zhou, F. L. Biodegradable polyurethane fiber-based strain sensor with a broad sensing range and high sensitivity for human motion monitoring. ACS Sustainable Chem. Eng. 2022, 10, 8788–8798.

[11]

Li, Z. J.; Lin, H.; Wu, S. Y.; Su, X. Y.; Wang, T.; Zhao, W.; Jiang, Y. J.; Ling, H. L.; Meng, A. L.; Zhang, M. Rice husk derived porous carbon embedded with Co3Fe7 nanoparticles towards microwave absorption. Compos. Sci. Technol. 2022, 229, 109673.

[12]

Zhang, Y. C.; Gao, S. T.; Wang, Y. Metal–organic framework derived magnetic carbon Ni@C octahedron composite as an excellent microwave absorber. Compos. Commun. 2022, 31, 101135.

[13]

Gao, Z. G.; Ma, Z. H.; Lan, D.; Zhao, Z. H.; Zhang, L. M.; Wu, H. J.; Hou, Y. L. Synergistic polarization loss of MoS2-based multiphase solid solution for electromagnetic wave absorption. Adv. Funct. Mater. 2022, 32, 2112294.

[14]

Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

[15]

Luo, H.; Chen, W. B.; Zhou, W.; Long, L.; Deng, L. W.; Xiao, P.; Li, Y. Carbon fiber/Si3N4 composites with SiC nanofiber interphase for enhanced microwave absorption properties. Ceram. Int. 2017, 43, 12328–12332.

[16]

You, X.; Dai, G. H.; Deng, R. X.; Zhang, T.; Song, L. X.; Zhang, X. Y.; Ding, Y. S.; Yang, J. S.; Dong, S. M. Fabrication of high-performance electromagnetic wave absorbing SiC composites reinforced by 3D printed carbon-based nanonetwork with Fe3O4 nanoparticles. Addit. Manuf. 2022, 55, 102855.

[17]

Li, H. S.; Gao, S.; Tong, H. X.; Liu, Y. L.; Wu, A. M.; Hao, H. The capacitive loss of microwave energy in Ni@SiC@C core/bi–shell nanoparticles. Chem. Eng. J. 2022, 434, 134655.

[18]

Hou, Y.; Cheng, L. F.; Zhang, Y. N.; Yang, Y.; Deng, C. R.; Yang, Z. H.; Chen, Q.; Wang, P.; Zheng, L. X. Electrospinning of Fe/SiC hybrid fibers for highly efficient microwave absorption. ACS Appl. Mater. Interfaces 2017, 9, 7265–7271.

[19]

Wang, H.; Wu, L. N.; Jiao, J. F.; Zhou, J. G.; Xu, Y. J.; Zhang, H. Y.; Jiang, Z. H.; Shen, B. Z.; Wang, Z. J. Covalent interaction enhanced electromagnetic wave absorption in SiC/Co hybrid nanowires. J. Mater. Chem. A 2015, 3, 6517–6525.

[20]

Zhou, M.; Zhang, X.; Wei, J. M.; Zhao, S. L.; Wang, L.; Feng, B. X. Morphology-controlled synthesis and novel microwave absorption properties of hollow urchinlike α-MnO2 nanostructures. J. Phys. Chem. C 2011, 115, 1398–1402.

[21]

Song, L. L.; Duan, Y. P.; Liu, J.; Pang, H. F. Assembled Ag-doped α-MnO2@δ-MnO2 nanocomposites with minimum lattice mismatch for broadband microwave absorption. Compos. B Eng. 2020, 199, 108318.

[22]

Yang, Z. H.; Li, M.; Zhang, Y.; Yang, L. J.; Liu, J. C.; Wang, Y. H.; He, Q. J. Constructing uniform Fe3O4@C@MnO2 microspheres with yolk–shell interior toward enhancement in microwave absorption. J. Alloys Compd. 2020, 817, 152795.

[23]

Qiao, M. T.; Lei, X. F.; Ma, Y.; Tian, L. D.; Su, K. H.; Zhang, Q. Y. Dependency of tunable microwave absorption performance on morphology-controlled hierarchical shells for core–shell Fe3O4@MnO2 composite microspheres. Chem. Eng. J. 2016, 304, 552–562.

[24]

Jia, H. X.; Xing, H. L.; Ji, X. L.; Gao, S. T. Self-template and in-situ polymerization strategy to lightweight hollow MnO2@polyaniline core–shell heterojunction with excellent microwave absorption properties. Appl. Surf. Sci. 2021, 537, 147857.

[25]

Ding, J. J.; Wang, L.; Zhao, Y. H.; Xing, L. S.; Yu, X. F.; Chen, G. Y.; Zhang, J.; Che, R. C. Boosted interfacial polarization from multishell TiO2@Fe3O4@PPy heterojunction for enhanced microwave absorption. Small 2019, 15, 1902885.

[26]

Ren, X. H.; Wang, J. T.; Yin, H. F.; Tang, Y.; Fan, H. Q.; Yuan, H. D.; Cui, S. S.; Huang, L. Hierarchical CoFe2O4@PPy hollow nanocubes with enhanced microwave absorption. Appl. Surf. Sci. 2022, 575, 151752.

[27]

Zhao, J.; Li, Z. J.; Zhang, M.; Meng, A. L.; Li, Q. D. Vertically cross-linked and porous CoNi2S4 nanosheets-decorated SiC nanowires with exceptional capacitive performance as a free-standing electrode for asymmetric supercapacitors. J. Power Sources. 2016, 332, 355–365.

[28]

Song, H. Y.; Zhao, H.; Zhang, X. F.; Xu, Y. M.; Cheng, X. L.; Gao, S.; Huo, L. H. 3D hierarchical hollow hydrangea-like Fe3+@ɛ-MnO2 microspheres with excellent electrochemical performance for dopamine and hydrogen peroxide. Biosens. Bioelectron. 2019, 133, 250–257.

[29]

Jiao, Z. B.; Huyan, W. J.; Yao, J. R.; Yao, Z. J.; Zhou, J. T.; Liu, P. J. Heterogeneous ZnO@CF structures and their excellent microwave absorbing properties with thin thickness and low filling. J. Mater. Sci. Technol. 2022, 113, 166–174.

[30]

Zhao, L. B.; Guo, Y. Y.; Xie, Y. X.; Cheng, T. T.; Meng, A. L.; Yuan, L. Y.; Zhao, W. X.; Sun, C. L.; Li, Z. J.; Zhang, M. Construction of SiCNWS@NiCo2O4@PANI 1D hierarchical nanocomposites toward high-efficiency microwave absorption. Appl. Surf. Sci. 2022, 592, 153324.

[31]

Li, Z. J.; Zhang, M.; Meng, A. L. Synthesis and mechanism of single-crystalline β-SiC nanowire arrays on a 6H-SiC substrate. CrystEngComm 2011, 13, 4097–4101.

[32]

Khan, A.; Zhang, K. K.; Taraqqi-A-Kamal, A.; Wang, X. G.; Chen, Y.; Zhang, Y. R. Degradation of antibiotics in aqueous media using manganese nanocatalyst-activated peroxymonosulfate. J. Colloid Interface Sci. 2021, 599, 805–818.

[33]

Qiao, M. T.; Lei, X. F.; Ma, Y.; Tian, L. D.; He, X. W.; Su, K. H.; Zhang, Q. Y. Application of yolk-shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 2018, 11, 1500–1519.

[34]

Mylarappa, M.; Lakshmi, V. V.; Mahesh, K. R. V.; Nagaswarupa, H. P.; Raghavendra, N. A facile hydrothermal recovery of nano sealed MnO2 particle from waste batteries: An advanced material for electrochemical and environmental applications. IOP Conf. Ser. Mater. Sci. Eng. 2016, 149, 012178.

[35]

Zhang, M.; Zhao, J.; Li, Z. J.; Ding, S. Q.; Wang, Y. Q.; Qiu, G. H.; Meng, A. L.; Li, Q. D. Ultralong SiC/SiO2 nanowires: Simple gram-scale production and their effective blue-violet photoluminescence and microwave absorption properties. ACS Sustainable Chem. Eng. 2018, 6, 3596–3603.

[36]

Yi, T. F.; Qiu, L. Y.; Mei, J.; Qi, S. Y.; Cui, P.; Luo, S. H.; Zhu, Y. R.; Xie, Y.; He, Y. B. Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials. Sci. Bull. 2020, 65, 546–556.

[37]

Xu, Y. G.; Wang, D. D.; Xie, M.; Jing, L. Q.; Huang, Y. P.; Huang, L. Y.; Xu, H.; Li, H. M.; Xie, J. M. Novel broad spectrum light responsive PPy/hexagonal-SnS2 photocatalyst for efficient photoreduction of Cr(VI). Mater. Res. Bull. 2019, 112, 226–235.

[38]

Li, Z. J.; Yu, H. Y.; Song, G. Y.; Zhao, J.; Zhang, H.; Zhang, M.; Meng, A. L.; Li, Q. D. Ten-gram scale SiC@SiO2 nanowires: High-yield synthesis towards industrialization, in situ growth mechanism and their peculiar photoluminescence and electromagnetic wave absorption properties. Phys. Chem. Chem. Phys. 2017, 19, 3948–3954.

[39]

Chen, S. L.; Li, W. J.; Li, X. X.; Yang, W. Y. One-dimensional SiC nanostructures: Designed growth, properties, and applications. Prog. Mater. Sci. 2019, 104, 138–214.

[40]

Hu, X. F.; Cheng, F. Y.; Han, X. P.; Zhang, T. R.; Chen, J. Oxygen bubble-templated hierarchical porous ε-MnO2 as a superior catalyst for rechargeable Li-O2 batteries. Small 2015, 11, 809–813.

[41]

Ren, J.; Shen, M.; Li, Z. L.; Yang, C. M.; Liang, Y.; Wang, H. E.; Li, J. H.; Li, N.; Qian, D. Towards high-performance all-solid-state asymmetric supercapacitors: A hierarchical doughnut-like Ni3S2@PPy core–shell heterostructure on nickel foam electrode and density functional theory calculations. J. Power Sources 2021, 501, 230003.

[42]

Xue, B.; Yang, S. D.; Sun, X.; Xie, L.; Qin, S. H.; Zheng, Q. From tanghulu-like to cattail-like SiC nanowire architectures: Interfacial design of nanocellulose composites toward high thermal conductivity. J. Mater. Chem. A 2020, 8, 14506–14518.

[43]

Tian, W.; Li, Y.; Zhou, J. J.; Wang, T.; Zhang, R. H.; Cao, J. C.; Luo, M. F.; Li, N.; Zhang, N.; Gong, H. Y. et al. Implantable and biodegradable micro-supercapacitor based on a superassembled three-dimensional network Zn@PPy hybrid electrode. ACS Appl Mater Interfaces 2021, 13, 8285–8293.

[44]

Shen, X. F.; Wang, X. N.; Zhou, Y. R.; Shi, Y. H.; Zhao, L. M.; Jin, H. H.; Di, J. T.; Li, Q. W. Highly reversible aqueous Zn-MnO2 battery by supplementing Mn2+-mediated MnO2 deposition and dissolution. Adv. Funct. Mater. 2021, 31, 2101579.

[45]

Wang, J. G.; Yang, Y.; Huang, Z. H.; Kang, F. Y. Rational synthesis of MnO2/conducting polypyrrole@carbon nanofiber triaxial Nano-cables for high-performance supercapacitors. J. Mater. Chem. 2012, 22, 16943–16949.

[46]

Chen, W. M.; Qie, L.; Shao, Q. G.; Yuan, L. X.; Zhang, W. X.; Huang, Y. H. Controllable synthesis of hollow bipyramid β-MnO2 and its high electrochemical performance for lithium storage. ACS Appl. Mater. Interfaces 2012, 4, 3047–3053.

[47]

Chen, Q.; Jin, J. L.; Kou, Z. K.; Liao, C.; Liu, Z. A.; Zhou, L.; Wang, J.; Mai, L. Q. Zn2+ pre-intercalation stabilizes the tunnel structure of MnO2 nanowires and enables zinc-ion hybrid supercapacitor of battery-level energy density. Small 2020, 16, 2000091.

[48]

Jiang, Z. Y.; Si, H. X.; Li, Y.; Li, D.; Chen, H. H.; Gong, C. H.; Zhang, J. W. Reduced graphene oxide@carbon sphere based metacomposites for temperature-insensitive and efficient microwave absorption. Nano Res. 2022, 15, 8546–8554.

[49]

Li, Z. J.; Lin, H.; Xie, Y. X.; Zhao, L. B.; Guo, Y. Y.; Cheng, T. T.; Ling, H. L.; Meng, A. L.; Li, S. X.; Zhang, M. Monodispersed Co@C nanoparticles anchored on reclaimed carbon black toward high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 124, 182–192.

[50]

Wen, J. W.; Li, X. X.; Chen, G.; Wang, Z. N.; Zhou, X. J.; Wu, H. J. Controllable adjustment of cavity of core–shelled Co3O4@NiCo2O4 composites via facile etching and deposition for electromagnetic wave absorption. J. Colloid Interface Sci. 2021, 594, 424–434.

[51]

Zhang, M.; Ling, H. L.; Ding, S. Q.; Xie, Y. X.; Cheng, T. T.; Zhao, L. B.; Wang, T.; Bian, H. G.; Lin, H.; Li, Z. J. et al. Synthesis of CF@PANI hybrid nanocomposites decorated with Fe3O4 nanoparticles towards excellent lightweight microwave absorber. Carbon 2021, 174, 248–259.

[52]

Li, Z. J.; Lin, H.; Ding, S. Q.; Ling, H. L.; Wang, T.; Miao, Z. Q.; Zhang, M.; Meng, A. L.; Li, Q. D. Synthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbon. Carbon 2020, 167, 148–159.

[53]

Su, K.; Wang, Y.; Hu, K. X.; Fang, X.; Yao, J.; Li, Q.; Yang, J. Ultralight and high-strength SiCNW@SiC foam with highly efficient microwave absorption and heat insulation properties. ACS Appl. Mater. Interfaces 2021, 13, 22017–22030.

[54]

Gu, J. W.; Lv, Z. Y.; Wu, Y. L.; Zhao, R. X.; Tian, L. D.; Zhang, Q. Y. Enhanced thermal conductivity of SiCp/PS composites by electrospinning-hot press technique. Compos. A Appl. Sci. Manuf. 2015, 79, 8–13.

[55]

Liu, J.; Tao, J. Q.; Gao, L. L.; He, X. X.; Wei, B.; Gu, Y. S.; Yao, Z. J.; Zhou, J. T. Morphology-size synergy strategy of SiC@C nanoparticles towards lightweight and efficient microwave absorption. Chem. Eng. J. 2022, 433, 134484.

[56]

Zhang, M.; Lin, H.; Ding, S. Q.; Wang, T.; Li, Z. J.; Meng, A. L.; Li, Q. D.; Lin, Y. S. Net-like SiC@C coaxial nanocable towards superior lightweight and broadband microwave absorber. Compos. B Eng. 2019, 179, 107525.

[57]

Tao, J. Q.; Zhou, J. T.; Yao, Z. J.; Jiao, Z. B.; Wei, B.; Tan, R. Y.; Li, Z. Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties. Carbon 2021, 172, 542–555.

[58]

Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.

[59]

Li, Z. J.; Wang, X. H.; Ling, H. L.; Lin, H.; Wang, T.; Zhang, M.; Meng, A. L.; Li, Q. D. Electromagnetic wave absorption properties of SiC@SiO2 nanoparticles fabricated by a catalyst-free precursor pyrolysis method. J. Alloys Compd. 2020, 830, 154643.

[60]

Wang, H. G.; Meng, F. B.; Li, J. Y.; Li, T.; Chen, Z. J.; Luo, H. B.; Zhou, Z. W. Carbonized design of hierarchical porous carbon/Fe3O4@Fe derived from loofah sponge to achieve tunable high-performance microwave absorption. ACS Sustainable Chem. Eng. 2018, 6, 11801–11810.

[61]

Yan, L. W.; Hong, C. Q.; Sun, B. Q.; Zhao, G. D.; Cheng, Y. H.; Dong, S.; Zhang, D. Y.; Zhang, X. H. In situ growth of core-sheath heterostructural SiC nanowire arrays on carbon fibers and enhanced electromagnetic wave absorption performance. ACS Appl Mater Interfaces 2017, 9, 6320–6331.

[62]

Wang, H. G.; Meng, F. B.; Huang, F.; Jing, C. F.; Li, Y.; Wei, W.; Zhou, Z. W. Interface modulating CNTs@PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption. ACS Appl. Mater. Interfaces 2019, 11, 12142–12153.

[63]

Han, Y. X.; Shi, X. T.; Wang, S. S.; Ruan, K. P.; Lu, C. Y.; Guo, Y. Q.; Gu, J. W. Nest-like hetero-structured BNNS@SiCnws fillers and significant improvement on thermal conductivities of epoxy composites. Compos. B Eng. 2021, 210, 108666.

[64]

Xu, H. X.; Zhang, G. Z.; Wang, Y.; Wang, Y. R.; Wang, H. L.; Huang, Y.; Liu, P. B. Heteroatoms-doped carbon nanocages with enhanced dipolar and defective polarization toward light-weight microwave absorbers. Nano Res. 2022, 15, 8705–8713.

[65]

Liu, P. B.; Wang, Y.; Zhang, G. Z.; Huang, Y.; Zhang, R. X.; Liu, X. H.; Zhang, X. F.; Che, R. C. Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction. Adv. Funct. Mater. 2022, 32, 2202588.

[66]

Xu, H. X.; Zhang, G. Z.; Wang, Y.; Ning, M. Q.; Ouyang, B.; Zhao, Y.; Huang, Y.; Liu, P. B. Size-dependent oxidation-induced phase engineering for MOFs derivatives via spatial confinement strategy toward enhanced microwave absorption. Nano-Micro Lett. 2022, 14, 102.

Nano Research
Pages 3558-3569
Cite this article:
Zhang M, Zhao L, Zhao W, et al. Boosted electromagnetic wave absorption performance from synergistic induced polarization of SiCNWs@MnO2@PPy heterostructures. Nano Research, 2023, 16(2): 3558-3569. https://doi.org/10.1007/s12274-022-5289-z
Topics:
Part of a topical collection:

3671

Views

23

Crossref

61

Web of Science

61

Scopus

3

CSCD

Altmetrics

Received: 15 October 2022
Revised: 28 October 2022
Accepted: 31 October 2022
Published: 23 December 2022
© Tsinghua University Press 2022
Return