AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Probing angle-resolved reflection signatures of intralayer and interlayer excitons in monolayer and bilayer MoS2

Hanwei Hu1Xuewen Zhang1Xinyu Zhang1Lishu Wu2Vanessa Li Zhang3Silin He1Guangchao Shi1Ting Yu3( )Jingzhi Shang1( )
Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710129, China
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
School of Physics and Technology, Wuhan University, Wuhan 430072, China
Show Author Information

Graphical Abstract

A GaN-nanowire-catalyzed one-step facile photo-synthesis of the C7 compound toluene, which contains both sp2- and sp3-carbons, via renewable methane and methanol feedstock is reported. The synthesis can be carried out in both photo- and thermal- conditions. In-depth mechanism study has revealed the outstanding catalytic activity of the new-generation semiconductor catalyst towards the engineering of C–H and C–C bonds.

Abstract

Strongly bound excitons in atomically thin transition metal dichalcogenides offer many opportunities to reveal the underlying physics of basic quasiparticles and many-body effects in the two-dimensional (2D) limit. Comprehensive reflection investigation on band-edge exciton transitions is essential to exploring wealthy light–matter interactions in the emerging 2D semiconductors, whereas angle-resolved reflection (ARR) characteristics of intralayer and interlayer excitons in 2D MoS2 layers remain unclear. Herein, we report ARR spectroscopic features of A, B, and interlayer excitons in monolayer (ML) and bilayer (BL) MoS2 on three kinds of photonic substrates, involving distinct exciton–photon interactions. In a BL MoS2 on a protected silver mirror, the interlayer exciton with one-third amplitude of A exciton appears at 0.05 eV above the A exciton energy, exhibiting an angle-insensitive energy dispersion. When ML and BL MoS2 lie on a SiO2-covered silicon, the broad trapped-photon mode weakly couples with the reflection bands of A and B excitons by the Fano resonance effect, causing the asymmetric lineshapes and the redshifted energies. After transferring MoS2 layers onto a one-dimensional photonic crystal, two high-lying branches of B-exciton polaritons are formed by the interactions between B excitons and Bragg photons, beyond the weak-coupling regime. This work provides ARR spectral benchmarks of A, B, and interlayer excitons in ML and BL MoS2, gaining insights into the interpretation of light–matter interactions in 2D semiconductors and the design of their devices for practical photonic applications.

Electronic Supplementary Material

Download File(s)
12274_2022_5292_MOESM1_ESM.pdf (1.9 MB)

References

[1]

Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216–226.

[2]

Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A. P.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S. J.; Geim, A. K.; Tartakovskii, A. I. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 2015, 14, 301–306.

[3]

Salehzadeh, O.; Djavid, M.; Tran, N. H.; Shih, I.; Mi, Z. T. Optically pumped two-dimensional MoS2 lasers operating at room-temperature. Nano Lett. 2015, 15, 5302–5306.

[4]

Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.

[5]

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

[6]

Xiao, D.; Liu, G. B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.

[7]

Cheiwchanchamnangij, T.; Lambrecht, W. R. L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B 2012, 85, 205302.

[8]

Yao, K. Y.; Yan, A. M.; Kahn, S.; Suslu, A.; Liang, Y. F.; Barnard, E. S.; Tongay, S.; Zettl, A.; Borys, N. J.; Schuck, P. J. Optically discriminating carrier-induced quasiparticle band gap and exciton energy renormalization in monolayer MoS2. Phys. Rev. Lett. 2017, 119, 087401.

[9]

Schaibley, J. R.; Yu, H. Y.; Clark, G.; Rivera, P.; Ross, J. S.; Seyler, K. L.; Yao, W.; Xu, X. D. Valleytronics in 2D materials. Nat. Rev. Mater. 2016, 1, 16055.

[10]

Wang, G.; Chernikov, A.; Glazov, M. M.; Heinz, T. F.; Marie, X.; Amand, T.; Urbaszek, B. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 2018, 90, 021001.

[11]

Gerber, I. C.; Courtade, E.; Shree, S.; Robert, C.; Taniguchi, T.; Watanabe, K.; Balocchi, A.; Renucci, P.; Lagarde, D.; Marie, X. et al. Interlayer excitons in bilayer MoS2 with strong oscillator strength up to room temperature. Phys. Rev. B 2019, 99, 035443.

[12]

Paradisanos, I.; Shree, S.; George, A.; Leisgang, N.; Robert, C.; Watanabe, K.; Taniguchi, T.; Warburton, R. J.; Turchanin, A.; Marie, X. et al. Controlling interlayer excitons in MoS2 layers grown by chemical vapor deposition. Nat. Commun. 2020, 11, 2391.

[13]

Leisgang, N.; Shree, S.; Paradisanos, I.; Sponfeldner, L.; Robert, C.; Lagarde, D.; Balocchi, A.; Watanabe, K.; Taniguchi, T.; Marie, X. et al. Giant stark splitting of an exciton in bilayer MoS2. Nat. Nanotechnol. 2020, 15, 901–907.

[14]

Lorchat, E.; Selig, M.; Katsch, F.; Yumigeta, K.; Tongay, S.; Knorr, A.; Schneider, C.; Höfling, S. Excitons in bilayer MoS2 displaying a colossal electric field splitting and tunable magnetic response. Phys. Rev. Lett. 2021, 126, 037401.

[15]

Deng, H.; Haug, H.; Yamamoto, Y. Exciton–polariton Bose-Einstein condensation. Rev. Mod. Phys. 2010, 82, 1489–1537.

[16]

Forn-Díaz, P.; Lamata, L.; Rico, E.; Kono, J.; Solano, E. Ultrastrong coupling regimes of light–matter interaction. Rev. Mod. Phys. 2019, 91, 025005.

[17]

Schneider, C.; Glazov, M. M.; Korn, T.; Höfling, S.; Urbaszek, B. Two-dimensional semiconductors in the regime of strong light–matter coupling. Nat. Commun. 2018, 9, 2695.

[18]

Li, Y. L.; Chernikov, A.; Zhang, X.; Rigosi, A.; Hill, H. M.; van der Zande, A. M.; Chenet, D. A.; Shih, E. M.; Hone, J.; Heinz, T. F. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 2014, 90, 205422.

[19]

Hsu, C.; Frisenda, R.; Schmidt, R.; Arora, A.; de Vasconcellos, S. M.; Bratschitsch, R.; van der Zant, H. S. J.; Castellanos-Gomez, A. Thickness-dependent refractive index of 1L, 2L, and 3L MoS2, MoSe2, WS2, and WSe2. Adv. Opt. Mater. 2019, 7, 1900239.

[20]

Cadiz, F.; Courtade, E.; Robert, C.; Wang, G.; Shen, Y.; Cai, H.; Taniguchi, T.; Watanabe, K.; Carrere, H.; Lagarde, D. et al. Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures. Phys. Rev. X 2017, 7, 021026.

[21]

Frisenda, R.; Niu, Y.; Gant, P.; Molina-Mendoza, A. J.; Schmidt, R.; Bratschitsch, R.; Liu, J. X.; Fu, L.; Dumcenco, D.; Kis, A. et al. Micro-reflectance and transmittance spectroscopy: A versatile and powerful tool to characterize 2D materials. J. Phys. D:Appl. Phys. 2017, 50, 074002.

[22]

Liu, X. Z.; Galfsky, T.; Sun, Z.; Xia, F. N.; Lin, E. C.; Lee, Y. H.; Kéna-Cohen, S.; Menon, V. M. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photonics 2015, 9, 30–34.

[23]

Chen, Y. J.; Cain, J. D.; Stanev, T. K.; Dravid, V. P.; Stern, N. P. Valley-polarized exciton–polaritons in a monolayer semiconductor. Nat. Photonics 2017, 11, 431–435.

[24]

Gan, X. T.; Gao, Y. D.; Mak, K. F.; Yao, X. W.; Shiue, R. J.; van der Zande, A.; Trusheim, M. E.; Hatami, F.; Heinz, T. F.; Hone, J. et al. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity. Appl. Phys. Lett. 2013, 103, 181119.

[25]

Reed, J. C.; Zhu, A. Y.; Zhu, H.; Yi, F.; Cubukcu, E. Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitter. Nano Lett. 2015, 15, 1967–1971.

[26]

Buscema, M.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res. 2014, 7, 561–571.

[27]

Ma, X. Z.; Youngblood, N.; Liu, X. Z.; Cheng, Y.; Cunha, P.; Kudtarkar, K.; Wang, X. M.; Lan, S. F. Engineering photonic environments for two-dimensional materials. Nanophotonics 2021, 10, 1031–1058.

[28]

Zhang, X. W.; Wu, L. S.; Wang, X.; He, S. L.; Hu, H. W.; Shi, G. C.; Zhang, X. W.; Shang, J. Z.; Yu, T. Monolayer tungsten disulfide in photonic environment: Angle-resolved weak and strong light–matter coupling. Nano Res. 2022, 15, 5619–5625.

[29]

Molina-Sánchez, A.; Sangalli, D.; Hummer, K.; Marini, A.; Wirtz, L. Effect of spin–orbit interaction on the optical spectra of single-layer, double-layer, and bulk MoS2. Phys. Rev. B 2013, 88, 045412.

[30]

Alidoust, N.; Bian, G.; Xu, S. Y.; Sankar, R.; Neupane, M.; Liu, C.; Belopolski, I.; Qu, D. X.; Denlinger, J. D.; Chou, F. C. et al. Observation of monolayer valence band spin-orbit effect and induced quantum well states in MoX2. Nat. Commun. 2014, 5, 4673.

[31]
Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light; Cambridge University Press: Cambridge, 2003; pp 54–64.
[32]

Faure, S.; Brimont, C.; Guillet, T.; Bretagnon, T.; Gil, B.; Médard, F.; Lagarde, D.; Disseix, P.; Leymarie, J.; Zúñiga-Pérez, J. et al. Relaxation and emission of Bragg-mode and cavity-mode polaritons in a ZnO microcavity at room temperature. Appl. Phys. Lett. 2009, 95, 121102.

[33]

Askitopoulos, A.; Mouchliadis, L.; Iorsh, I.; Christmann, G.; Baumberg, J. J.; Kaliteevski, M. A.; Hatzopoulos, Z.; Savvidis, P. G. Bragg polaritons: Strong coupling and amplification in an unfolded microcavity. Phys. Rev. Lett. 2011, 106, 076401.

[34]

Hu, F. R.; Fei, Z. Recent progress on exciton polaritons in layered transition-metal dichalcogenides. Adv. Opt. Mater. 2020, 8, 1901003.

[35]

Huang, L. J.; Krasnok, A.; Alú, A.; Yu, Y. L.; Neshev, D.; Miroshnichenko, A. E. Enhanced light–matter interaction in two-dimensional transition metal dichalcogenides. Rep. Prog. Phys. 2022, 85, 046401.

[36]

Hopfield, J. J. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. 1958, 112, 1555–1567.

[37]

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

[38]

Niehues, I.; Blob, A.; Stiehm, T.; de Vasconcellos, S. M.; Bratschitsch, R. Interlayer excitons in bilayer MoS2 under uniaxial tensile strain. Nanoscale 2019, 11, 12788–12792.

[39]

Carrascoso, F.; Lin, D. Y.; Frisenda, R.; Castellanos-Gomez, A. Biaxial strain tuning of interlayer excitons in bilayer MoS2. J. Phys. Mater. 2020, 3, 015003.

[40]

Grzeszczyk, M.; Szpakowski, J.; Slobodeniuk, A. O.; Kazimierczuk, T.; Bhatnagar, M.; Taniguchi, T.; Watanabe, K.; Kossacki, P.; Potemski, M.; Babiński, A. et al. The optical response of artificially twisted MoS2 bilayers. Sci. Rep. 2021, 11, 17037.

[41]

Zhao, Y. C.; Du, L. J.; Yang, S. Q.; Tian, J. P.; Li, X. M.; Shen, C.; Tang, J.; Chu, Y. B.; Watanabe, K.; Taniguchi, T. et al. Interlayer exciton complexes in bilayer MoS2. Phys. Rev. B 2022, 105, L041411.

[42]

Schwarz, S.; Dufferwiel, S.; Walker, P. M.; Withers, F.; Trichet, A. A. P.; Sich, M.; Li, F.; Chekhovich, E. A.; Borisenko, D. N.; Kolesnikov, N. N. et al. Two-dimensional metal-chalcogenide films in tunable optical microcavities. Nano Lett. 2014, 14, 7003–7008.

[43]

Savona, V.; Andreani, L. C.; Schwendimann, P.; Quattropani, A. Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes. Solid State Commun. 1995, 93, 733–739.

[44]

Zhang, L.; Gogna, R.; Burg, W.; Tutuc, E.; Deng, H. Photonic-crystal exciton–polaritons in monolayer semiconductors. Nat. Commun. 2018, 9, 713.

[45]

Wang, X.; Wu, L. S.; Zhang, X. W.; Yang, W. H.; Sun, Z.; Shang, J. Z.; Huang, W.; Yu, T. Observation of Bragg polaritons in monolayer tungsten disulphide. Nano Res. 2022, 15, 1479–1485.

Nano Research
Pages 7844-7850
Cite this article:
Hu H, Zhang X, Zhang X, et al. Probing angle-resolved reflection signatures of intralayer and interlayer excitons in monolayer and bilayer MoS2. Nano Research, 2023, 16(5): 7844-7850. https://doi.org/10.1007/s12274-022-5292-4
Topics:

3723

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 31 August 2022
Revised: 17 October 2022
Accepted: 03 November 2022
Published: 23 December 2022
© Tsinghua University Press 2022
Return