AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Molecular levers enable anomalously enhanced strength and toughness of cellulose nanocrystal at cryogenic temperature

YuanZhen Hou1Jun Xia1,2( )ZeZhou He1YinBo Zhu1HengAn Wu1( )
CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China
Show Author Information

Graphical Abstract

This paper reports an anomalous stabilizing effect on mechanical behaviors by molecular levers (MLs), which behave like covalent bindings under cryogenic conditions and provide superiorly enhanced strength and toughness for cellulose nanocrystals (CNCs).

Abstract

The quest for widespread applications especially in extreme environments accentuates the necessity to design materials with robust mechanical and thermodynamic stabilities. Almost all existing materials yield temperature-variant mechanical properties, essentially determined by their different atomic bonding regimes. In general, weak non-covalent interactions are considered to diminish the structural anti-destabilization of covalent crystals despite the toughening effect. Whereas, starting from multiscale theoretical modeling, we herein reveal an anomalous stabilizing effect in cellulose nanocrystals (CNCs) by the cooperation between the non-covalent hydrogen bonds and covalent glucosidic skeleton, namely molecular levers (MLs). It is surprising to find that the hydrogen bonds in MLs behave like covalent bindings under cryogenic conditions, which provide anomalously enhanced strength and toughness for CNCs. Thermodynamic analyses demonstrate that the unique dynamical mechanical behaviors from ambient to deep cryogenic temperatures are synergetic results of the intrinsic temperature dependence veiled in MLs and the overall thermo-induced CNC destabilization/amorphization. As the consequence, the variation trend of mechanical strength exhibits a bilinear temperature dependence with ~ 77 K as the turning point. Our underlying investigations not only establish the bottom–up interrelations from the hydrogen bonding thermodynamics to the crystal-scale mechanical properties, but also facilitate the potential application of cellulose-based materials at extremely low temperatures such as those in outer space.

Electronic Supplementary Material

Download File(s)
12274_2022_5293_MOESM1_ESM.pdf (856.3 KB)

References

[1]

Mohanty, A. K.; Vivekanandhan, S.; Pin, J. M.; Misra, M. Composites from renewable and sustainable resources: Challenges and innovations. Science 2018, 362, 536–542.

[2]

Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994.

[3]

Ray, U.; Zhu, S. Z.; Pang, Z. Q.; Li, T. Mechanics design in cellulose-enabled high-performance functional materials. Adv. Mater. 2021, 33, 2002504.

[4]

Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A new family of nature-based materials. Angew. Chem., Int. Ed. 2011, 50, 5438–5466.

[5]

Song, J. W.; Chen, C. J.; Zhu, S. Z.; Zhu, M. W.; Dai, J. Q.; Ray, U.; Li, Y. J.; Kuang, Y. D.; Li, Y. F.; Quispe, N. et al. Processing bulk natural wood into a high-performance structural material. Nature 2018, 554, 224–228.

[6]

Xiong, C. Y.; Wang, T. X.; Zhang, Y. K.; Zhu, M.; Ni, Y. H. Recent progress on green electromagnetic shielding materials based on macro wood and micro cellulose components from natural agricultural and forestry resources. Nano Res. 2022, 15, 7506–7532.

[7]

Guan, Q. F.; Ling, Z. C.; Han, Z. M.; Yang, H. B.; Yu, S. H. Ultra-strong, ultra-tough, transparent, and sustainable nanocomposite films for plastic substitute. Matter 2020, 3, 1308–1317.

[8]

Ma, Z. Y.; Pan, X. F.; Xu, Z. L.; Yu, Z. L.; Qin, B.; Yin, Y. C.; Gao, Y. C.; Yu, S. H. Nanosheet-coated synthetic wood with enhanced flame-retardancy by vacuum-assisted sonocoating technique. Nano Res. 2022, 15, 9440–9446.

[9]

Wang, R. L.; Chen, C. J.; Pang, Z. Q.; Wang, X. Z.; Zhou, Y. B.; Dong, Q.; Guo, M.; Gao, J. L.; Ray, U.; Xia, Q. Q. et al. Fabrication of cellulose-graphite foam via ion cross-linking and ambient-drying. Nano Lett. 2022, 22, 3931–3938.

[10]

Chen, C. J.; Song, J. W.; Cheng, J.; Pang, Z. Q.; Gan, W. T.; Chen, G. G.; Kuang, Y. D.; Huang, H.; Ray, U.; Li, T. et al. Highly elastic hydrated cellulosic materials with durable compressibility and tunable conductivity. ACS Nano 2020, 14, 16723–16734.

[11]

Song, J. W.; Chen, C. J.; Yang, Z.; Kuang, Y. D.; Li, T.; Li, Y. J.; Huang, H.; Kierzewski, I.; Liu, B. Y.; He, S. M. et al. Highly compressible, anisotropic aerogel with aligned cellulose nanofibers. ACS Nano 2018, 12, 140–147.

[12]

Antonietti, M. Sustainable bulk structural material engineered from cellulose nanofibers. Matter 2020, 3, 339–340.

[13]

Guan, Q. F.; Yang, H. B.; Han, Z. M.; Zhou, L. C.; Zhu, Y. B.; Ling, Z. C.; Jiang, H. B.; Wang, P. F.; Ma, T.; Wu, H. A. et al. Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient. Sci. Adv. 2020, 6, eaaz1114.

[14]

Hou, Y. Z.; Guan, Q. F.; Xia, J.; Ling, Z. C.; He, Z. Z.; Han, Z. M.; Yang, H. B.; Gu, P.; Zhu, Y. B.; Yu, S. H. et al. Strengthening and toughening hierarchical nanocellulose via humidity-mediated interface. ACS Nano 2021, 15, 1310–1320.

[15]

Eder, M.; Schäffner, W.; Burgert, I.; Fratzl, P. Wood and the activity of dead tissue. Adv. Mater. 2021, 33, 2001412.

[16]

Sinko, R.; Keten, S. Effect of moisture on the traction-separation behavior of cellulose nanocrystal interfaces. Appl. Phys. Lett. 2014, 105, 243702.

[17]

Pitzer, K. S. The nature of the chemical bond and the structure of molecules and crystals: An introduction to modern structural chemistry. J. Am. Chem. Soc. 1960, 82, 4121–4121.

[18]

Mizan, T. I.; Savage, P. E.; Ziff, R. M. Temperature dependence of hydrogen bonding in supercritical water. J. Phys. Chem. 1996, 100, 403–408.

[19]

Ashby, M. F.; Medalist, R. F. M. The mechanical properties of cellular solids. Metall. Trans. A 1983, 14, 1755–1769.

[20]

Meng, Q. H.; Gao, Y.; Shi, X. H.; Feng, X. Q. Three-dimensional crack bridging model of biological materials with twisted bouligand structures. J. Mech. Phys. Solids 2022, 159, 104729.

[21]

Xia, J.; Zhu, Y. B.; Jin, X.; Wu, H. G. Unravelling the bindings between organic molecule and reduced graphene oxide in aqueous environment. Carbon 2020, 167, 345–350.

[22]

Li, T. EML Webinar overview: Advanced materials toward a sustainable future-mechanics design. Extreme Mech. Lett. 2021, 42, 101107.

[23]

Meng, Q. H.; Li, B.; Li, T.; Feng, X. Q. A multiscale crack-bridging model of cellulose nanopaper. J. Mech. Phys. Solids 2017, 103, 22–39.

[24]

Xia, J.; Zhu, Y. B.; He, Z. Z.; Wang, F. C.; Wu, H. G. Superstrong noncovalent interface between melamine and graphene oxide. ACS Appl. Mater. Interfaces 2019, 11, 17068–17078.

[25]

Mahadevi, A. S.; Sastry, G. N. Cooperativity in noncovalent interactions. Chem. Rev. 2016, 116, 2775–2825.

[26]

Fu, Y. Q.; Wu, J. Y.; Xiao, S. B.; Liu, S. Q.; Zhang, Z. L.; He, J. Y. Tensile mechanical characteristics of ultra-thin carbon sulfur nanothreads in orientational order. Carbon 2021, 184, 146–155.

[27]

Akinwande, D.; Brennan, C. J.; Bunch, J. S.; Egberts, P.; Felts, J. R.; Gao, H. J.; Huang, R.; Kim, J. S.; Li, T.; Li, Y. et al. A review on mechanics and mechanical properties of 2D materials-graphene and beyond. Extreme Mech. Lett. 2017, 13, 42–77.

[28]

Zhao, K.; Zhang, T. F.; Chang, H. C.; Yang, Y.; Xiao, P. S.; Zhang, H. T.; Li, C. X.; Tiwary, C. S.; Ajayan, P. M.; Chen, Y. S. Super-elasticity of three-dimensionally cross-linked graphene materials all the way to deep cryogenic temperatures. Sci. Adv. 2019, 5, eaav2589.

[29]

Sinko, R.; Mishra, S.; Ruiz, L.; Brandis, N.; Keten, S. Dimensions of biological cellulose nanocrystals maximize fracture strength. ACS Macro Lett. 2014, 3, 64–69.

[30]

Cheng, Q. F.; Jiang, L.; Tang, Z. Y. Bioinspired layered materials with superior mechanical performance. Acc. Chem. Res. 2014, 47, 1256–1266.

[31]

Zhang, Q.; Bulone, V.; Ågren, H.; Tu, Y. Q. A molecular dynamics study of the thermal response of crystalline cellulose Iβ. Cellulose 2011, 18, 207–221.

[32]

Hou, Y. Z.; He, Z. Z.; Zhu, Y. B.; Wu, H. G. Intrinsic kink deformation in nanocellulose. Carbohydr. Polym. 2021, 273, 118578.

[33]

He, Z. Z.; Zhu, Y. B.; Wu, H. A universal mechanical framework for noncovalent interface in laminated nanocomposites. J. Mech. Phys. Solids 2022, 158, 104560.

[34]

Karakalos, S.; Xu, Y. F.; Kabeer, F. C.; Chen, W.; Rodríguez-Reyes, J. C. F.; Tkatchenko, A.; Kaxiras, E.; Madix, R. J.; Friend, C. M. Noncovalent bonding controls selectivity in heterogeneous catalysis: Coupling reactions on gold. J. Am. Chem. Soc. 2016, 138, 15243–15250.

[35]

Neal, J. A.; Mozhdehi, D.; Guan, Z. B. Enhancing mechanical performance of a covalent self-healing material by sacrificial noncovalent bonds. J. Am. Chem. Soc. 2015, 137, 4846–4850.

[36]

Meng, Q. H.; Shi, X. H. A microstructure-based constitutive model of anisotropic cellulose nanopaper with aligned nanofibers. Extreme Mech. Lett. 2021, 43, 101158.

[37]

He, Z. Z.; Zhu, Y. B.; Xia, J.; Wu, H. G. Optimization design on simultaneously strengthening and toughening graphene-based nacre-like materials through noncovalent interaction. J. Mech. Phys. Solids 2019, 133, 103706.

[38]

Altaner, C. M.; Thomas, L. H.; Fernandes, A. N.; Jarvis, M. C. How cellulose stretches: Synergism between covalent and hydrogen bonding. Biomacromolecules 2014, 15, 791–798.

[39]

Djahedi, C.; Bergenstråhle-Wohlert, M.; Berglund, L. A.; Wohlert, J. Role of hydrogen bonding in cellulose deformation: The leverage effect analyzed by molecular modeling. Cellulose 2016, 23, 2315–2323.

[40]
Maaz, K. The Transmission Electron Microscope: Theory and Applications; IntechOpen: London, 2015.
[41]

Foster, E. J.; Moon, R. J.; Agarwal, U. P.; Bortner, M. J.; Bras, J.; Camarero-Espinosa, S.; Chan, K. J.; Clift, M. J. D.; Cranston, E. D.; Eichhorn, S. J. et al. Current characterization methods for cellulose nanomaterials. Chem. Soc. Rev. 2018, 47, 2609–2679.

[42]

Martin-Martinez, F. J. Designing nanocellulose materials from the molecular scale. Proc. Natl. Acad. Sci. USA 2018, 115, 7174–7175.

[43]

Meng, Q. H.; Wang, T. J. Mechanics of strong and tough cellulose nanopaper. Appl. Mech. Rev. 2019, 71, 040801.

[44]

Wu, X. W.; Moon, R. J.; Martini, A. Tensile strength of Iβ crystalline cellulose predicted by molecular dynamics simulation. Cellulose 2014, 21, 2233–2245.

[45]

Dri, F. L.; Wu, X. W.; Moon, R. J.; Martini, A.; Zavattieri, P. D. Evaluation of reactive force fields for prediction of the thermo-mechanical properties of cellulose Iβ. Comput. Mater. Sci. 2015, 109, 330–340.

[46]

Li, D. Y.; Li, Z. M.; Xie, L.; Zhang, Y.; Wang, W. R. Cryogenic mechanical behavior of a TRIP-assisted dual-phase high-entropy alloy. Nano Res. 2022, 15, 4859–4866.

[47]

Wang, Y. Q.; Liu, B.; Yan, K.; Wang, M. S.; Kabra, S.; Chiu, Y. L.; Dye, D.; Lee, P. D.; Liu, Y.; Cai, B. Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77 K using in situ neutron diffraction. Acta Mater. 2018, 154, 79–89.

[48]

Tong, Y.; Chen, D.; Han, B.; Wang, J.; Feng, R.; Yang, T.; Zhao, C.; Zhao, Y. L.; Guo, W.; Shimizu, Y. et al. Outstanding tensile properties of a precipitation-strengthened FeCoNiCrTi0.2 high-entropy alloy at room and cryogenic temperatures. Acta Mater. 2019, 165, 228–240.

[49]

Zhou, W.; Zhang, Y.; Sun, H.; Chen, C. F. Ideal strength and structural instability of aluminum at finite temperatures. Phys. Rev. B 2012, 86, 054118.

[50]

Rae, P. J.; Brown, E. N.; Orler, E. B. The mechanical properties of poly(ether-ether-ketone) (PEEK) with emphasis on the large compressive strain response. Polymer 2007, 48, 598–615.

[51]

Gaymans, R. J.; Hamberg, M. J. J.; Inberg, J. P. F. The brittle-ductile transition temperature of polycarbonate as a function of test speed. Polym. Eng. Sci. 2000, 40, 256–262.

[52]

Garcia-Gonzalez, D.; Rodriguez-Millan, M.; Rusinek, A.; Arias, A. Low temperature effect on impact energy absorption capability of PEEK composites. Compos. Struct. 2015, 134, 440–449.

[53]

Zhao, H.; Min, K.; Aluru, N. R. Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett. 2009, 9, 3012–3015.

[54]

Park, H. S.; Gall, K.; Zimmerman, J. A. Deformation of FCC nanowires by twinning and slip. J. Mech. Phys. Solids 2006, 54, 1862–1881.

[55]

Chowdhury, S. C.; Gillespie, J. W. A molecular dynamics study of the effects of hydrogen bonds on mechanical properties of Kevlar® crystal. Comput. Mater. Sci. 2018, 148, 286–300.

Nano Research
Pages 8036-8041
Cite this article:
Hou Y, Xia J, He Z, et al. Molecular levers enable anomalously enhanced strength and toughness of cellulose nanocrystal at cryogenic temperature. Nano Research, 2023, 16(5): 8036-8041. https://doi.org/10.1007/s12274-022-5293-3
Topics:

3717

Views

3

Crossref

3

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 09 September 2022
Revised: 18 October 2022
Accepted: 04 November 2022
Published: 17 December 2022
© Tsinghua University Press 2022
Return