AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Pseudo-break imaging of carbon nanotubes for determining elastic bending energies

Changfei Jing1Yongji Qin2Wengen Ouyang3,4( )Jun Luo2( )
Institute for New Energy Materials and Low-Carbon Technologies and Tianjin Key Lab of Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China
Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, China
State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
Show Author Information

Graphical Abstract

The measurement of elastic bending energies of one-dimensional (1D) nanomaterials is extremely difficult because the second-order derivatives of the displacements of individual bent 1D nanomaterials and their Young’s moduli and area moments of inertia are simultaneously necessary for the determination. In our work, the pseudo-break imaging of 1D nanomaterials provides the values of the bending energies of carbon nanotubes (CNTs) with an accuracy of 1–50 eV and manipulates the bending shapes and energies of CNTs. The validity and mechanism of the pseudo-break imaging are confirmed and revealed by theoretical simulations based on classical mechanics.

Abstract

One-dimensional (1D) nanomaterials easily bend due to perturbations from their surroundings or their own behaviors. This phenomenon not only impacts the performances of various devices but has also been employed to develop a variety of new functional devices, in which the bending energies of the nanomaterials determine the device performances. However, measuring the energies of such nanomaterials is extremely difficult. Herein, pseudo-break imaging of 1D nanomaterials has been proposed and realized on individual carbon nanotubes (CNTs), in which a CNT appears to break and has a fracture but is actually intact. This imaging approach provides the values of the bending energies of the CNTs with an accuracy of 1–50 eV. Furthermore, this imaging approach can manipulate the bending shapes and energies of CNTs. This work presents a protocol for bending analysis and manipulation, which are vital to fundamental and applied studies of 1D nanomaterials.

Electronic Supplementary Material

Video
12274_2022_5295_MOESM2_ESM.avi
12274_2022_5295_MOESM3_ESM.avi
12274_2022_5295_MOESM4_ESM.avi
12274_2022_5295_MOESM5_ESM.avi
Download File(s)
12274_2022_5295_MOESM1_ESM.pdf (672.5 KB)

References

[1]

Bai, Y. X.; Yue, H. J.; Wang, J.; Shen, B. Y.; Sun, S.; Wang, S. J.; Wang, H. D.; Li, X. D.; Xu, Z. P.; Zhang, R. F.; Wei, F. Super-durable ultralong carbon nanotubes. Science 2020, 369, 1104–1106.

[2]

Shyu, T. C.; Damasceno, P. F.; Dodd, P. M.; Lamoureux, A.; Xu, L. Z.; Shlian, M.; Shtein, M.; Glotzer, S. C.; Kotov, N. A. A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nat. Mater. 2015, 14, 785–789.

[3]

Hao, D. D.; Zhang, J. Y.; Li, L.; Yang, B.; Guo, P.; Zhang, S. Q.; Huang, J. Air-stable synaptic devices based on bismuth triiodide and carbon nanotubes. Nano Res. 2022, 15, 5435–5442.

[4]

Ilatovskii, D. A.; Gilshtein, E. P.; Glukhova, O. E.; Nasibulin, A. G. Transparent conducting films based on carbon nanotubes: Rational design toward the theoretical limit. Adv. Sci. 2022, 9, 2201673.

[5]

Hou, Y. Q.; Wang, M.; Chen, X. Y.; Hou, X. Continuous water–water hydrogen bonding network across the rim of carbon nanotubes facilitating water transport for desalination. Nano Res. 2021, 14, 2171–2178.

[6]

Wang, H. C.; Zhou, R. C.; Li, D. H.; Zhang, L. R.; Ren, G. Z.; Wang, L.; Liu, J. H.; Wang, D. Y.; Tang, Z. H.; Lu, G. et al. High-performance foam-shaped strain sensor based on carbon nanotubes and Ti3C2Tx MXene for the monitoring of human activities. ACS Nano 2021, 15, 9690–9700.

[7]

De Volder, M.; Park, S.; Tawfick, S.; Hart, A. J. Strain-engineered manufacturing of freeform carbon nanotube microstructures. Nat. Commun. 2014, 5, 4512.

[8]

Zhang, S.; Pang, J. B.; Li, Y. F.; Yang, F.; Gemming, T.; Wang, K.; Wang, X.; Peng, S. G.; Liu, X. Y.; Chang, B. et al. Emerging Internet of Things driven carbon nanotubes-based devices. Nano Res. 2022, 15, 4613–4637.

[9]

Eichler, A.; Moser, J.; Dykman, M. I.; Bachtold, A. Symmetry breaking in a mechanical resonator made from a carbon nanotube. Nat. Commun. 2013, 4, 2843.

[10]

Zhang, R. F.; Zhang, Y. Y.; Zhang, Q.; Xie, H. H.; Wang, H. D.; Nie, J. Q.; Wen, Q.; Wei, F. Optical visualization of individual ultralong carbon nanotubes by chemical vapour deposition of titanium dioxide nanoparticles. Nat. Commun. 2013, 4, 1727.

[11]

Meng, G.; Jin, M. M.; Wei, T. R.; Liu, Q.; Zhang, S. S.; Peng, X. Y.; Luo, J.; Liu, X. J. MoC nanocrystals confined in N-doped carbon nanosheets toward highly selective electrocatalytic nitric oxide reduction to ammonia. Nano Res. 2022, 15, 8890–8896.

[12]

Zhang, R. F.; Ning, Z. Y.; Zhang, Y. Y.; Zheng, Q. S.; Chen, Q.; Xie, H. H.; Zhang, Q.; Qian, W. Z.; Wei, F. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nat. Nanotechnol. 2013, 8, 912–916.

[13]

Zhao, B.; Dang, W. Q.; Yang, X. D.; Li, J.; Bao, H. H.; Wang, K.; Luo, J.; Zhang, Z. W.; Li, B.; Xie, H. P. et al. van der Waals epitaxial growth of ultrathin metallic NiSe nanosheets on WSe2 as high performance contacts for WSe2 transistors. Nano Res. 2019, 12, 1683–1689.

[14]

Xu, J.; Lai, S. H.; Qi, D. F.; Hu, M.; Peng, X. Y.; Liu, Y. F.; Liu, W.; Hu, G. Z.; Xu, H.; Li, F. et al. Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Res. 2021, 14, 1374–1381.

[15]

Wang, H. M.; Wang, H. M.; Zhang, S. C.; Zhang, Y.; Xia, K. L.; Yin, Z.; Zhang, M. C.; Liang, X. P.; Lu, H. J.; Li, S. et al. Carbothermal shock enabled facile and fast growth of carbon nanotubes in a second. Nano Res. 2022, 15, 2576–2581.

[16]

Zhang, R. F.; Wen, Q.; Qian, W. Z.; Su, D. S.; Zhang, Q.; Wei, F. Superstrong ultralong carbon nanotubes for mechanical energy storage. Adv. Mater. 2011, 23, 3387–3391.

[17]

Luo, J.; Ouyang, W. G.; Li, X. P.; Jin, Z.; Yang, L. J.; Chen, C. Q.; Zhang, J.; Li, Y.; Warner, J. H.; Peng, L. M. et al. Pointwise plucking of suspended carbon nanotubes. Nano Lett. 2012, 12, 3663–3667.

[18]

Laird, E. A.; Pei, F.; Kouwenhoven, L. P. A valley-spin qubit in a carbon nanotube. Nat. Nanotechnol. 2013, 8, 565–568.

[19]

Patil, J. J.; Chae, W. H.; Trebach, A.; Carter, K. J.; Lee, E.; Sannicolo, T.; Grossman, J. C. Failing forward: Stability of transparent electrodes based on metal nanowire networks. Adv. Mater. 2021, 33, 2004356.

[20]

Chae, S. H.; Yu, W. J.; Bae, J. J.; Duong, D. L.; Perello, D.; Jeong, H. Y.; Ta, Q. H.; Ly, T. H.; Vu, Q. A.; Yun, M. et al. Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. Nat. Mater. 2013, 12, 403–409.

[21]

Takahashi, T.; Yu, Z. B.; Chen, K.; Kiriya, D.; Wang, C.; Takei, K.; Shiraki, H.; Chen, T.; Ma, B. W.; Javey, A. Carbon nanotube active-matrix backplanes for mechanically flexible visible light and X-ray imagers. Nano Lett. 2013, 13, 5425–5430.

[22]

Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607.

[23]

Huang, Z. G.; Kang, S. K.; Banno, M.; Yamaguchi, T.; Lee, D.; Seok, C.; Yashima, E.; Lee, M. Pulsating tubules from noncovalent macrocycles. Science 2012, 337, 1521–1526.

[24]

Jang, Y.; Kim, S. M.; Spinks, G. M.; Kim, S. J. Carbon nanotube yarn for fiber-shaped electrical sensors, actuators, and energy storage for smart systems. Adv. Mater. 2020, 32, 1902670.

[25]

Oh, J.; Yang, J. C.; Kim, J. O.; Park, H.; Kwon, S. Y.; Lee, S.; Sim, J. Y.; Oh, H. W.; Kim, J.; Park, S. Pressure insensitive strain sensor with facile solution-based process for tactile sensing applications. ACS Nano 2018, 12, 7546–7553.

[26]

Pan, C. F.; Dong, L.; Zhu, G.; Niu, S. M.; Yu, R. M.; Yang, Q.; Liu, Y.; Wang, Z. L. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat. Photonics 2013, 7, 752–758.

[27]

Fakhri, N.; MacKintosh, F. C.; Lounis, B.; Cognet, L.; Pasquali, M. Brownian motion of stiff filaments in a crowded environment. Science 2010, 330, 1804–1807.

[28]

Zhu, S.; Ni, J. F.; Li, Y. Carbon nanotube-based electrodes for flexible supercapacitors. Nano Res. 2020, 13, 1825–1841.

[29]

Yuan, H.; Wang, G.; Zhao, Y. X.; Liu, Y.; Wu, Y.; Zhang, Y. G. A stretchable, asymmetric, coaxial fiber-shaped supercapacitor for wearable electronics. Nano Res. 2020, 13, 1686–1692.

[30]

Xu, Y. Y.; Deng, P. L.; Chen, G. D.; Chen, J. X.; Yan, Y.; Qi, K.; Liu, H. F.; Xia, B. Y. 2D nitrogen-doped carbon nanotubes/graphene hybrid as bifunctional oxygen electrocatalyst for long-life rechargeable Zn-air batteries. Adv. Funct. Mater. 2020, 30, 1906081.

[31]

Guo, W. L.; Si, W. P.; Zhang, T.; Han, Y. H.; Wang, L.; Zhou, Z. Y.; Lu, P. Y.; Hou, F.; Liang, J. Ultrathin NixCoy-silicate nanosheets natively anchored on CNTs films for flexible lithium ion batteries. J. Energy Chem. 2021, 54, 746–753.

[32]

Zhang, C. Y.; Zhang, Q.; Zhang, D.; Wang, M. Y.; Bo, Y. W.; Fan, X. Q.; Li, F. C.; Liang, J. J.; Huang, Y.; Ma, R. J. et al. Highly stretchable carbon nanotubes/polymer thermoelectric fibers. Nano Lett. 2021, 21, 1047–1055.

[33]

Dai, S.; Zhao, J.; He, M. R.; Wang, X. G.; Wan, J. C.; Shan, Z. W.; Zhu, J. Elastic properties of GaN nanowires: Revealing the influence of planar defects on Young’s modulus at nanoscale. Nano Lett. 2015, 15, 8–15.

[34]

Dai, S.; Zhao, J.; Xie, L.; Cai, Y.; Wang, N.; Zhu, J. Electron-beam-induced elastic-plastic transition in Si nanowires. Nano Lett. 2012, 12, 2379–2385.

[35]

Koch, M.; Ample, F.; Joachim, C.; Grill, L. Voltage-dependent conductance of a single graphene nanoribbon. Nat. Nanotechnol. 2012, 7, 713–717.

[36]

Zhang, L. C.; Liang, J.; Yue, L. C.; Xu, Z. Q.; Dong, K.; Liu, Q.; Luo, Y. L.; Li, T. S.; Cheng, X. H.; Cui, G. W. et al. N-doped carbon nanotubes supported CoSe2 nanoparticles: A highly efficient and stable catalyst for H2O2 electrosynthesis in acidic media. Nano Res. 2022, 15, 304–309.

[37]

Xu, X. T.; Wan, X. Z.; Li, H. N.; Zhang, Y. K.; He, W.; Wang, S. L.; Wang, M.; Hou, X.; Wang, S. T. Oil-polluted water purification via the carbon-nanotubes-doped organohydrogel platform. Nano Res. 2022, 15, 5653–5662.

[38]

Warner, J. H.; Young, N. P.; Kirkland, A. I.; Briggs, G. A. D. Resolving strain in carbon nanotubes at the atomic level. Nat. Mater. 2011, 10, 958–962.

[39]
Timoshenko, S. Strength of Materials Part 1 Elementary Theory and Problems; D. Van Nostrand Company: New York, 1940.
[40]

Jin, Z.; Chu, H. B.; Wang, J. Y.; Hong, J. X.; Tan, W. C.; Li, Y. Ultralow feeding gas flow guiding growth of large-scale horizontally aligned single-walled carbon nanotube arrays. Nano Lett. 2007, 7, 2073–2079.

[41]

Luo, J.; Tian, P.; Pan, C. T.; Robertson, A. W.; Warner, J. H.; Hill, E. W.; Briggs, G. A. D. Ultralow secondary electron emission of graphene. ACS Nano 2011, 5, 1047–1055.

[42]

Alam, M. K.; Yaghoobi, P.; Chang, M.; Nojeh, A. Secondary electron yield of multiwalled carbon nanotubes. Appl. Phys. Lett. 2010, 96, 213113.

[43]

Lu, J. P. Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 1997, 79, 1297–1300.

[44]

Lassagne, B.; Ugnati, D.; Respaud, M. Ultrasensitive magnetometers based on carbon-nanotube mechanical resonators. Phys. Rev. Lett. 2011, 107, 130801.

[45]
Weaver, W. Jr.; Timoshenko, S. P.; Young, D. H. Vibration Problems in Engineering, 5th ed.; John Wiley & Sons: New York, 1990.
[46]

Lee, S. Y.; Chao, J. C. Out-of-plane vibrations of curved non-uniform beams of constant radius. J. Sound Vib. 2000, 238, 443–458.

[47]

Markus, S.; Nanasi, T. Vibration of curved beams. Shock Vib. Dig. 1981, 13, 3–14.

[48]

Cazaux, J. Some considerations on the electric field induced in insulators by electron bombardment. J. Appl. Phys. 1986, 59, 1418–1430.

[49]

Cazaux, J. Mechanisms of charging in electron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 1999, 105, 155–185.

[50]

Stevens Kalceff, M. A.; Thorogood, G. J.; Short, K. T. Charge trapping and defect segregation in quartz. J. Appl. Phys. 1999, 86, 205–208.

[51]

Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, P. Controlling doping and carrier injection in carbon nanotube transistors. Appl. Phys. Lett. 2002, 80, 2773–2775.

[52]

Li, J. J.; Chu, Y. H.; Zhu, K. D. Controlling signal transport in a carbon nanotube opto-transistor. Sci. Rep. 2016, 6, 37193.

[53]

Dürkop, T.; Getty, S. A.; Cobas, E.; Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 2004, 4, 35–39.

[54]

Yu, W. J.; Lee, Y. H. Strategy for carrier control in carbon nanotube transistors. ChemSusChem 2011, 4, 890–904.

Nano Research
Pages 7443-7451
Cite this article:
Jing C, Qin Y, Ouyang W, et al. Pseudo-break imaging of carbon nanotubes for determining elastic bending energies. Nano Research, 2023, 16(5): 7443-7451. https://doi.org/10.1007/s12274-022-5295-1
Topics:

3617

Views

1

Crossref

2

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 14 September 2022
Revised: 26 October 2022
Accepted: 03 November 2022
Published: 03 February 2023
© Tsinghua University Press 2022
Return