Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The difficulty of obtaining high-intensity localized light spots for optical probes leads to their lack of good applications in nanoimaging. Here we demonstrate a Fabry–Pérot resonance flat-based plasmonic fiber probe (FPFP). The simulation results show that the probe can obtain a nanofocusing spot at the tip with the radially polarized mode. The Fabry–Pérot interference structure is used to control the plasmon propagation on the surface of the probe, and it effectively improves the local spot intensity at the tip. Furthermore, the experimental results verify that the FPFP (tip curvature radius is 20 nm) prepared by chemical etching method can obtain a nanofocusing spot at the tip. The nanoimaging of the gold slit structure demonstrates the nanoimaging capability of the FPFP, and the 36.9 nm slit width is clearly identified by the FPFP.
Hillenbrand, R.; Taubner, T.; Keilmann, F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature 2002, 418, 159–162.
Nuño, Z.; Hessler, B.; Ochoa, J.; Shon, Y. S.; Bonney, C.; Abate, Y. Nanoscale subsurface- and material-specific identification of single nanoparticles. Opt. Express 2011, 19, 20865–20875.
Korn, S.; Popp, M. A.; Weber, H. B. A point-like thermal light source as a probe for sensing light–matter interaction. Sci. Rep. 2022, 12, 4881.
Engel, M.; Steiner, M.; Lombardo, A.; Ferrari, A. C.; Löhneysen, H. V.; Avouris, P.; Krupke, R. Light–matter interaction in a microcavity-controlled graphene transistor. Nat. Commun. 2012, 3, 906.
Wang, F.; Yang, S. M.; Li, S. B.; Zhao, S. H.; Cheng, B. Y.; Xia, C. S. High resolution and high signal-to-noise ratio imaging with near-field high-order optical signals. Nano Res. 2022, 9, 8345–8350.
Virmani, D.; Bylinkin, A.; Dolado, I.; Janzen, E.; Edgar, J. H.; Hillenbrand, R. Amplitude- and phase-resolved infrared nanoimaging and nanospectroscopy of polaritons in a liquid environment. Nano Lett. 2021, 21, 1360–1367.
Wang, H. M.; Wang, L.; Xu, X. G. Scattering-type scanning near-field optical microscopy with low-repetition-rate pulsed light source through phase-domain sampling. Nat. Commun. 2016, 7, 13212.
Wang, L.; Xu, X. J. Scattering-type scanning near-field optical microscopy with reconstruction of vertical interaction. Nat. Commun. 2015, 6, 8973.
Chen, J. N.; Nesterov, M. L.; Nikitin, A. Y.; Thongrattanasiri, S.; Alonso-González, P.; Slipchenko, T. M.; Speck, F.; Ostler, M.; Seyller, T.; Crassee, I. et al. Strong plasmon reflection at nanometer-size gaps in monolayer graphene on SiC. Nano Lett. 2013, 13, 6210–6215.
Ni, G. X.; Wang, H.; Wu, J. S.; Fei, Z.; Goldflam, M. D.; Keilmann, F.; Özyilmaz, B.; Castro Neto, A. H.; Xie, X. M.; Fogler, M. M. et al. Plasmons in graphene moiré superlattices. Nat. Mater. 2015, 14, 1217–1222.
Wang, X.; Huang, S. C.; Huang, T. X.; Su, H. S.; Zhong, J. H.; Zeng, Z. C.; Li, M. H.; Ren, B. Tip-enhanced Raman spectroscopy for surfaces and interfaces. Chem. Soc. Rev. 2017, 46, 4020–4041.
Schnell, M.; Goikoetxea, M.; Amenabar, I.; Carney, P. S.; Hillenbrand, R. Rapid infrared spectroscopic nanoimaging with nano-FTIR holography. ACS Photonics 2020, 7, 2878–2885.
Möslein, A. F.; Gutiérrez, M.; Cohen, B.; Tan, J. C. Near-field infrared nanospectroscopy reveals guest confinement in metal-organic framework single crystals. Nano Lett. 2020, 20, 7446–7454.
Kauranen, M.; Zayats, A. V. Nonlinear plasmonics. Nat. Photonics 2012, 6, 737–748.
Zhen, X.; Pu, K. Y. Development of optical nanoprobes for molecular imaging of reactive oxygen and nitrogen species. Nano Res. 2018, 11, 5258–5280.
Senichev, A.; Corfdir, P.; Brandt, O.; Ramsteiner, M.; Breuer, S.; Schilling, J.; Geelhaar, L.; Werner, P. Electronic properties of wurtzite GaAs: A correlated structural, optical, and theoretical analysis of the same polytypic GaAs nanowire. Nano Res. 2018, 11, 4708–4721.
Kusch, P.; Mastel, S.; Mueller, N. S.; Azpiazu, N. M.; Heeg, S.; Gorbachev, R.; Schedin, F.; Hübner, U.; Pascual, J. I.; Reich, S. et al. Dual-scattering near-field microscope for correlative nanoimaging of SERS and electromagnetic hotspots. Nano Lett. 2017, 17, 2667–2673.
Arab, S.; Anderson, P. D.; Yao, M. Q.; Zhou, C. W.; Dapkus, P. D.; Povinelli, M. L.; Cronin, S. B. Enhanced Fabry–Perot resonance in GaAs nanowires through local field enhancement and surface passivation. Nano Res. 2014, 7, 1146–1153.
Ma, J. M.; Liu, X. F.; Wang, R. W.; Zhang, F.; Tu, G. L. Plasmon-induced near-field and resonance energy transfer enhancement of photodegradation activity by Au wrapped CuS dual-chain. Nano Res. 2022, 15, 5671–5677.
Degl’Innocenti, R.; Wallis, R.; Wei, B. B.; Xiao, L.; Kindness, S. J.; Mitrofanov, O.; Braeuninger-Weimer, P.; Hofmann, S.; Beere, H. E.; Ritchie, D. A. Terahertz nanoscopy of plasmonic resonances with a quantum cascade laser. ACS Photonics 2017, 4, 2150–2157.
Singh, A.; Calbris, G.; Van Hulst, N. F. Vectorial nanoscale mapping of optical antenna fields by single molecule dipoles. Nano Lett. 2014, 14, 4715–4723.
Taminiau, T. H.; Moerland, R. J.; Segerink, F. B.; Kuipers, L.; Van Hulst, N. F. λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence. Nano Lett. 2007, 7, 28–33.
Sanz-Paz, M.; Ernandes, C.; Esparza, J. U.; Burr, G. W.; Van Hulst, N. F.; Maitre, A.; Aigouy, L.; Gacoin, T.; Bonod, N.; Garcia-Parajo, M. F. et al. Enhancing magnetic light emission with all-dielectric optical nanoantennas. Nano Lett. 2018, 18, 3481–3487.
Umakoshi, T.; Saito, Y.; Verma, P. Highly efficient plasmonic tip design for plasmon nanofocusing in near-field optical microscopy. Nanoscale 2016, 8, 5634–5640.
Hou, Y. P.; Ma, C. F.; Wang, W. T.; Chen, Y. H. A dual-use probe for nano-metric photoelectric characterization using a confined light field generated by photonic crystals in the cantilever. Nano Res. 2021, 14, 3848–3853.
Lu, F. F.; Zhang, W. D.; Zhang, J. C.; Liu, M.; Zhang, L.; Xue, T. Y.; Meng, C.; Gao, F.; Mei, T.; Zhao, J. L. Grating-assisted coupling enhancing plasmonic tip nanofocusing illuminated via radial vector beam. Nanophotonics 2019, 8, 2303–2311.
Liu, M.; Zhang, W. D.; Lu, F. F.; Xue, T. Y.; Li, X.; Zhang, L.; Mao, D.; Huang, L. G.; Gao, F.; Mei, T. et al. Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy. Photonics Res. 2019, 7, 526–531.
Tugchin, B. N.; Janunts, N.; Klein, A. E.; Steinert, M.; Fasold, S.; Diziain, S.; Sison, M.; Kley, E. B.; Tünnermann, A.; Pertsch, T. Plasmonic tip based on excitation of radially polarized conical surface Plasmon polariton for detecting longitudinal and transversal fields. ACS Photonics 2015, 2, 1468–1475.
Liu, M.; Lu, F. F.; Zhang, W. D.; Huang, L. G.; Liang, S. H.; Mao, D.; Gao, F.; Mei, T.; Zhao, J. L. Highly efficient plasmonic nanofocusing on a metallized fiber tip with internal illumination of the radial vector mode using an acousto-optic coupling approach. Nanophotonics 2019, 8, 921–929.
Li, S. B.; Yang, S. M. Nanofocusing of a novel plasmonic fiber tip coupling with nanograting resonance. J. Phys. D:Appl. Phys. 2020, 53, 215102.
Li, S. B.; Yang, S. M.; Wang, F.; Liu, Q.; Cheng, B. Y.; Rosenwaks, Y. Plasmonic interference modulation for broadband nanofocusing. Nanophotonics 2021, 10, 4113–4123.
Jiang, R. H.; Chen, C.; Lin, D. Z.; Chou, H. C.; Chu, J. Y.; Yen, T. J. Near-field plasmonic probe with super resolution and high throughput and signal-to-noise ratio. Nano Lett. 2018, 18, 881–885.
Talebi, N.; Sigle, W.; Vogelgesang, R.; Esmann, M.; Becker, S. F.; Lienau, C.; van Aken, P. A. Excitation of mesoscopic plasmonic tapers by relativistic electrons: Phase matching versus eigenmode resonances. ACS Nano 2015, 9, 7641–7648.
Guo, S. R.; Talebi, N.; Sigle, W.; Vogelgesang, R.; Richter, G.; Esmann, M.; Becker, S. F.; Lienau, C.; van Aken, P. A. Reflection and phase matching in plasmonic gold tapers. Nano Lett. 2016, 16, 6137–6144.
Böckmann, H.; Liu, S. Y.; Müller, M.; Hammud, A.; Wolf, M.; Kumagai, T. Near-field manipulation in a scanning tunneling microscope junction with plasmonic Fabry–Pérot tips. Nano Lett. 2019, 19, 3597–3602.
Sain, B.; Kaner, R.; Bondy, Y.; Prior, Y. Plasmonic flat surface Fabry–Perot interferometry. Nanophotonics 2018, 7, 635–641.
Zhang, W. D.; Huang, L. G.; Wei, K. Y.; Li, P.; Jiang, B. Q.; Mao, D.; Gao, F.; Mei, T.; Zhang, G. Q.; Zhao, J. L. Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave. Opt. Express 2016, 24, 10376–10384.
Neumann, L.; Pang, Y. J.; Houyou, A.; Juan, M. L.; Gordon, R.; van Hulst, N. F. Extraordinary optical transmission brightens near-field fiber probe. Nano Lett. 2011, 11, 355–360.
Neumann, L.; van ’t Oever, J.; van Hulst, N. F. A resonant scanning dipole-antenna probe for enhanced nanoscale imaging. Nano Lett. 2013, 13, 5070–5074.
Berthelot, J.; Aćimović, S. S.; Juan, M. L.; Kreuzer, M. P.; Renger, J.; Quidant, R. Three-dimensional manipulation with scanning near-field optical nanotweezers. Nat. Nanotechnol. 2014, 9, 295–299.
Kim, S.; Yu, N.; Ma, X. Z.; Zhu, Y. Z.; Liu, Q. S.; Liu, M.; Yan, R. X. High external-efficiency nanofocusing for lens-free near-field optical nanoscopy. Nat. Photonics 2019, 13, 636–643.