Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
High-voltage medium-nickel low-cobalt lithium layered oxide cathode materials are becoming a popular development route for high-energy lithium-ion batteries due to their relatively high capacity, low cost, and improved safety. Unfortunately, capacity fading derived from surface lithium residue, electrode-electrolyte interfacial side reactions, and bulk structure degradation severely limits large-scale commercial utilization. In this work, an ultrathin and uniform NASICON-type Li3V2(PO4)3 (LVP) nanoscale functional coating is formed in situ by utilizing residual lithium to enhance the lithium storage performance of LiNi0.6Co0.05Mn0.35O2 (NCM) cathode. The GITT and ex-situ EIS and XPS demonstrate exceptional Li+ diffusion and conductivity and attenuated interfacial side reactions, improving the electrode-electrolyte interface stability. The variable temperature in-situ XRD demonstrates delayed phase transition temperature to improve thermal stability. The battery in-situ XRD displays the single-phase H1-H2 reaction and weakened harmful H3 phase transition, minimizing the bulk mechanical degradation. These improvements are attributed to the removal of surface residual lithium and the formation of NASICON-type Li3V2(PO4)3 functional coatings with stable structure and high ionic and electronic conductivity. Consequently, the obtained NCM@LVP delivers a higher capacity retention rate (97.1% vs. 79.6%) after 150 cycles and a superior rate capacity (87 mAh·g–1 vs. 58 mAh·g–1) at a 5 C current density than the pristine NCM under a high cut-off voltage of 4.5 V. This work suggests a clever way to utilize residual lithium to form functional coatings in situ to improve the lithium storage performance of high-voltage medium-nickel low-cobalt cathode materials.
Li, W. D.; Erickson, E. M.; Manthiram, A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy 2020, 5, 26–34.
Liu, J. X.; Wang, J. Q.; Ni, Y. X.; Zhang, K.; Cheng, F. Y.; Chen, J. Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries. Mater. Today 2021, 43, 132–165.
Liu, W.; Oh, P.; Liu, X. E.; Lee, M. J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem., Int. Ed. 2015, 54, 4440–4457.
Wu, K.; Li, Q.; Dang, R. B.; Deng, X.; Chen, M. M.; Lee, Y. L.; Xiao, X. L.; Hu, Z. B. A novel synthesis strategy to improve cycle stability of LiNi0.8Mn0. 1Co0. 1O2 at high cut-off voltages through core-shell structuring. Nano Res. 2019, 12, 2460–2467.
Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.
Jiang, M.; Danilov, D. L.; Eichel, R. A.; Notten, P. H. L. A review of degradation mechanisms and recent achievements for Ni-rich cathode-based Li-ion batteries. Adv. Energy Mater. 2021, 11, 2103005.
Zhao, H.; Lam, W. Y. A.; Sheng, L.; Wang, L.; Bai, P.; Yang, Y.; Ren, D. S.; Xu, H.; He, X. M. Cobalt-free cathode materials: Families and their prospects. Adv. Energy Mater. 2022, 12, 2103894.
Shen, Y. B.; Yao, X. J.; Zhang, J. H.; Wang, S. H.; Zhang, D. Y.; Yin, D. M.; Wang, L. M.; Zhang, Y. H.; Hu, J. H.; Cheng, Y. et al. Sodium doping derived electromagnetic center of lithium layered oxide cathode materials with enhanced lithium storage. Nano Energy 2022, 94, 106900.
Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.
Liu, T. C.; Yu, L.; Liu, J. J.; Lu, J.; Bi, X. X.; Dai, A.; Li, M.; Li, M. F.; Hu, Z. X.; Ma, L. et al. Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries. Nat. Energy 2021, 6, 277–286.
Kim, Y.; Park, H.; Warner, J. H.; Manthiram, A. Unraveling the intricacies of residual lithium in high-Ni cathodes for lithium-ion batteries. ACS Energy Lett. 2021, 6, 941–948.
Yang, W.; Xiang, W.; Chen, Y. X.; Wu, Z. G.; Hua, W. B.; Qiu, L.; He, F. R.; Zhang, J.; Zhong, B. H.; Guo, X. D. Interfacial regulation of Ni-rich cathode materials with an ion-conductive and pillaring layer by infusing gradient boron for improved cycle stability. ACS Appl. Mater. Interfaces 2020, 12, 10240–10251.
Ryu, W. G.; Shin, H. S.; Park, M. S.; Kim, H.; Jung, K. N.; Lee, J. W. Mitigating storage-induced degradation of Ni-rich LiNi0.8Co0. 1Mn0. 1O2 cathode material by surface tuning with phosphate. Ceram. Int. 2019, 45, 13942–13950.
Li, W. D.; Song, B. H.; Manthiram, A. High-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev. 2017, 46, 3006–3059.
Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.
Shen, Y. B.; Yao, X. J.; Wang, S. H.; Zhang, D. Y.; Yin, D. M.; Wang, L. M.; Cheng, Y. Gospel for improving the lithium storage performance of high-voltage high-nickel low-cobalt layered oxide cathode materials. ACS Appl. Mater. Interfaces 2021, 13, 58871–58884.
Zhang, W.; Sun, Y. G.; Deng, H. Q.; Ma, J. M.; Zeng, Y.; Zhu, Z. Q.; Lv, Z. S.; Xia, H. R.; Ge, X.; Cao, S. K. et al. Dielectric polarization in inverse spinel-structured Mg2TiO4 coating to suppress oxygen evolution of Li-rich cathode materials. Adv. Mater. 2020, 32, 2000496.
Wen, Y. K.; Zhuang, Z. C.; Zhu, H.; Hao, J. C.; Chu, K. B.; Lai, F. L.; Zong, W.; Wang, C.; Ma, P. M.; Dong, W. F. et al. Isolation of metalloid boron atoms in intermetallic carbide boosts the catalytic selectivity for electrocatalytic N2 fixation. Adv. Energy Mater. 2021, 11, 2102138.
Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.
Huang, X.; Zhu, W. C.; Yao, J. Y.; Bu, L. M.; Li, X. Y.; Tian, K.; Lu, H.; Quan, C. X.; Xu, S. G.; Xu, K. H. et al. Suppressing structural degradation of Ni-rich cathode materials towards improved cycling stability enabled by a Li2MnO3 coating. J. Mater. Chem. A 2020, 8, 17429–17441.
Jiang, K. Z.; Guo, S. H.; Pang, W. K.; Zhang, X. P.; Fang, T. C.; Wang, S. F.; Wang, F. W.; Zhang, X. Y.; He, P.; Zhou, H. S. Oxygen vacancy promising highly reversible phase transition in layered cathodes for sodium-ion batteries. Nano Res. 2021, 14, 4100–4106.
Du, K.; Gao, A.; Gao, L. F.; Sun, S. W.; Lu, X.; Yu, C. Y.; Li, S. Y.; Zhao, H. L.; Bai, Y. Enhancing the structure stability of Ni-rich LiNi0.6Co0. 2Mn0. 2O2 cathode via encapsulating in negative thermal expansion nanocrystalline shell. Nano Energy 2021, 83, 105775.
Lai, Y. J.; Li, Z. J.; Zhao, W. X.; Cheng, X. N.; Xu, S.; Yu, X.; Liu, Y. An ultrasound-triggered cation chelation and reassembly route to one-dimensional Ni-rich cathode material enabling fast charging and stable cycling of Li-ion batteries. Nano Res. 2020, 13, 3347–3357.
Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Cao, K. C.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S. et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 2022, 16, 3251–3263.
Cheng, Y.; Sun, Y.; Chu, C. T.; Chang, L. M.; Wang, Z. M.; Zhang, D. Y.; Liu, W. Q.; Zhuang, Z. C.; Wang, L. M. Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries. Nano Res. 2022, 15, 4091–4099.
Yang, H. P.; Wu, H. H.; Ge, M. Y.; Li, L. J.; Yuan, Y. F.; Yao, Q.; Chen, J.; Xia, L. F.; Zheng, J. M.; Chen, Z. Y. et al. Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries. Adv. Funct. Mater. 2019, 29, 1808825.
Yoon, M.; Dong, Y. H.; Hwang, J.; Sung, J.; Cha, H.; Ahn, K.; Huang, Y. M.; Kang, S. J.; Li, J.; Cho, J. Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nat. Energy 2021, 6, 362–371.
Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Wang, C.; Lu, S. L.; Duan, F.; Xu, F. P.; Du, M. L.; Zhu, H. Interatomic electronegativity offset dictates selectivity when catalyzing the CO2 reduction reaction. Adv. Energy Mater. 2022, 12, 2200579.
Zhang, H. L.; Zhang, J. J. An overview of modification strategies to improve LiNi0·8Co0·1Mn0·1O2 (NCM811) cathode performance for automotive lithium-ion batteries. eTransportation 2021, 7, 100105.
Kang, Q.; Li, Y.; Zhuang, Z. C.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.
Kim, J.; Ma, H.; Cha, H.; Lee, H.; Sung, J.; Seo, M.; Oh, P.; Park, M.; Cho, J. A highly stabilized nickel-rich cathode material by nanoscale epitaxy control for high-energy lithium-ion batteries. Energy Environ. Sci. 2018, 11, 1449–1459.
Yao, L.; Liang, F. Q.; Jin, J.; Chowdari, B. V. R.; Yang, J. H.; Wen, Z. Y. Improved electrochemical property of Ni-rich LiNi0.6Co0. 2Mn0. 2O2 cathode via in-situ ZrO2 coating for high energy density lithium ion batteries. Chem. Eng. J. 2020, 389, 124403.
Xie, J.; Sendek, A. D.; Cubuk, E. D.; Zhang, X. K.; Lu, Z. Y.; Gong, Y. J.; Wu, T.; Shi, F. F.; Liu, W.; Reed, E. J. et al. Atomic layer deposition of stable LiAlF4 lithium ion conductive interfacial layer for stable cathode cycling. ACS Nano 2017, 11, 7019–7027.
Wu, Y. Q.; Ming, H.; Li, M. L.; Zhang, J. L.; Wahyudi, W.; Xie, L. Q.; He, X. M.; Wang, J.; Wu, Y. P.; Ming, J. New organic complex for lithium layered oxide modification: Ultrathin coating, high-voltage, and safety performances. ACS Energy Lett. 2019, 4, 656–665.
Jamil, S.; Wang, G.; Yang, L.; Xie, X.; Cao, S.; Liu, H.; Chang, B. B.; Wang, X. Y. Suppressing H2-H3 phase transition in high Ni-low Co layered oxide cathode material by dual modification. J. Mater. Chem. A 2020, 8, 21306–21316.
Zhai, Y. W.; Yang, W. Y.; Ning, D.; Yang, J. B.; Sun, L. M.; Schuck, G.; Schumacher, G.; Liu, X. F. Improving the cycling and air-storage stability of LiNi0.8Co0. 1Mn0. 1O2 through integrated surface/interface/doping engineering. J. Mater. Chem. A 2020, 8, 5234–5245.
Kim, J. H.; Kim, H.; Choi, W.; Park, M. S. Bifunctional surface coating of LiNbO3 on high-Ni layered cathode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 35098–35104.
Neudeck, S.; Walther, F.; Bergfeldt, T.; Suchomski, C.; Rohnke, M.; Hartmann, P.; Janek, J.; Brezesinski, T. Molecular surface modification of NCM622 cathode material using organophosphates for improved Li-ion battery full-cells. ACS Appl. Mater. Interfaces 2018, 10, 20487–20498.
Fan, Q. L.; Yang, S. D.; Liu, J.; Liu, H. D.; Lin, K. J.; Liu, R.; Hong, C. Y.; Liu, L. Y.; Chen, Y.; An, K. et al. Mixed-conducting interlayer boosting the electrochemical performance of Ni-rich layered oxide cathode materials for lithium ion batteries. J. Power Sources 2019, 421, 91–99.
Kim, J. M.; Zhang, X. H.; Zhang, J. G.; Manthiram, A.; Meng, Y. S.; Xu, W. A review on the stability and surface modification of layered transition-metal oxide cathodes. Mater. Today 2021, 46, 155–182.
Chen, S. Q.; Wu, C.; Shen, L. F.; Zhu, C. B.; Huang, Y. Y.; Xi, K.; Maier, J.; Yu, Y. Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv. Mater. 2017, 29, 1700431.
Niu, Y. J.; Yu, Z. Z.; Zhou, Y. J.; Tang, J. W.; Li, M. X.; Zhuang, Z. C.; Yang, Y.; Huang, X.; Tian, B. B. Constructing stable Li-solid electrolyte interphase to achieve dendrites-free solid-state battery: A nano-interlayer/Li pre-reduction strategy. Nano Res. 2022, 15, 7180–7189.
Hu, Q.; He, Y. F.; Ren, D. S.; Song, Y. Z.; Wu, Y. Z.; Liang, H. M.; Gao, J. H.; Xu, G.; Cai, J. Y.; Li, T. Y. et al. Targeted masking enables stable cycling of LiNi0.6Co0. 2Mn0. 2O2 at 4. 6 V. Nano Energy 2022, 96, 107123.
Shen, Y. B.; Xue, H. J.; Wang, S. H.; Wang, Z. M.; Zhang, D. Y.; Yin, D. M.; Wang, L. M.; Cheng, Y. A highly promising high-nickel low-cobalt lithium layered oxide cathode material for high-performance lithium-ion batteries. J. Colloid Interface Sci. 2021, 597, 334–344.
Liu, Y.; Tang, L. B.; Wei, H. X.; Zhang, X. H.; He, Z. J.; Li, Y. J.; Zheng, J. C. Enhancement on structural stability of Ni-rich cathode materials by in-situ fabricating dual-modified layer for lithium-ion batteries. Nano Energy 2019, 65, 104043.
Liu, W.; Li, X. F.; Hao, Y. C.; Xiong, D. B.; Shan, H.; Wang, J. J.; Xiao, W.; Yang, H. J.; Yang, H.; Kou, L. et al. Functional passivation interface of LiNi0.8Co0. 1Mn0. 1O2 toward superior lithium storage. Adv. Funct. Mater. 2021, 31, 2008301.
Xu, Q.; Li, X. F.; Kheimeh Sari, H. M.; Li, W. B.; Liu, W.; Hao, Y. C.; Qin, J.; Cao, B.; Xiao, W.; Xu, Y. et al. Surface engineering of LiNi0.8Mn0. 1Co0. 1O2 towards boosting lithium storage:Bimetallic oxides versus monometallic oxides. Nano Energy 2020, 77, 105034.
Liu, S. Y.; Zhang, C. C.; Su, Q. L.; Li, L. Y.; Su, J. M.; Huang, T.; Chen, Y. B.; Yu, A. S. Enhancing electrochemical performance of LiNi0.6Co0. 2Mn0. 2O2 by lithium-ion conductor surface modification. Electrochim. Acta 2017, 224, 171–177.
Li, L. J.; Xu, M.; Yao, Q.; Chen, Z. Y.; Song, L. B.; Zhang, Z. A.; Gao, C. H.; Wang, P.; Yu, Z. Y.; Lai, Y. Q. Alleviating surface degradation of nickel-rich layered oxide cathode material by encapsulating with nanoscale Li-ions/electrons superionic conductors hybrid membrane for advanced Li-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 30879–30889.
Li, J. Y.; Li, W. D.; Wang, S. Y.; Jarvis, K.; Yang, J. H.; Manthiram, A. Facilitating the operation of lithium-ion cells with high-nickel layered oxide cathodes with a small dose of aluminum. Chem. Mater. 2018, 30, 3101–3109.
Jeong, M.; Kim, H.; Lee, W.; Ahn, S. J.; Lee, E.; Yoon, W. S. Stabilizing effects of Al-doping on Ni-rich LiNi0.80Co0. 15Mn0. 05O2 cathode for Li rechargeable batteries. J. Power Sources 2020, 474, 228592.
Wang, Y. Y.; Wang, Y. Y.; Liu, S.; Li, G. R.; Zhou, Z.; Xu, N.; Wu, M. T.; Gao, X. P. Building the stable oxygen framework in high-Ni layered oxide cathode for high-energy-density Li-ion batteries. Energy Environ. Mater. 2022, 5, 1260–1269.
Mo, Y.; Guo, L. J.; Cao, B. K.; Wang, Y. G.; Zhang, L.; Jia, X. B.; Chen, Y. Correlating structural changes of the improved cyclability upon Nd-substitution in LiNi0.5Co0. 2Mn0. 3O2 cathode materials. Energy Storage Mater. 2019, 18, 260–268.
Xie, Q.; Li, W. D.; Manthiram, A. A Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density Li-ion batteries. Chem. Mater. 2019, 31, 938–946.
Li, J. Y.; Manthiram, A. A comprehensive analysis of the interphasial and structural evolution over long-term cycling of ultrahigh-nickel cathodes in lithium-ion batteries. Adv. Energy Mater. 2019, 9, 1902731.
Zhuang, Z. C.; Huang, J. Z.; Li, Y.; Zhou, L.; Mai, L. Q. The holy grail in platinum-free electrocatalytic hydrogen evolution: Molybdenum-based catalysts and recent advances. ChemElectroChem 2019, 6, 3570–3589.
Wang, C. L.; Gao, Y. X.; Sun, L. S.; Zhao, Y.; Yin, D. M.; Wang, H. R.; Cao, J. C.; Cheng, Y.; Wang, L. M. Anti-catalytic and zincophilic layers integrated zinc anode towards efficient aqueous batteries for ultra-long cycling stability. Nano Res. 2022, 15, 8076–8082.
Jiang, J. Z.; Bai, S. S.; Zou, J.; Liu, S.; Hsu, J. P.; Li, N.; Zhu, G. Y.; Zhuang, Z. C.; Kang, Q.; Zhang, Y. Z. Improving stability of MXenes. Nano Res. 2022, 15, 6551–6567.
Luo, L. X.; Fu, C. H.; Wu, A. M.; Zhuang, Z. C.; Zhu, F. J.; Jiang, F. L.; Shen, S. Y.; Cai, X. Y.; Kang, Q.; Zheng, Z. F. et al. Hydrogen-assisted scalable preparation of ultrathin Pt shells onto surfactant-free and uniform Pd nanoparticles for highly efficient oxygen reduction reaction in practical fuel cells. Nano Res. 2022, 15, 1892–1900.