Graphical Abstract

The enhanced permeability and retention (EPR) effect alone is not enough for nanoparticles to reach the target. Combination of active and passive targeting may be an effective drug delivery route. Hollow ferric-tannic acid complex nanocapsules (HFe-TA) may effectively degrade and release Fe2+ ions, and Fe2+ ions induce the production of ·OH, however, the fenton reaction needs amount of H2O2 to enhance chemodynamic therapy. Due to their deficiencies, such nanoparticles cannot realize intravenous drug delivery. Here, the mesothelin-targeted membrane (MTM) was constructed to realize accurate delivery nano-system, and mesothelin antibody was expressed on the 293T cell membrane to prepare a MTM. Lactate oxidase (Lox) was loaded on HFe-TA to obtain Lox@HFe-TA. Lox@HFe-TA was coated with MTM to develop the MTM nanosystem. Tirapazamine (TPZ) therapy also requires hypoxia circumstance. The MTM nanosystem combined with TPZ can significantly kill tumour cells and inhibit metastasis in vivo and in vitro. We also tested the biological safety of the treatment. In this study, we overcame the EPR defects via the MTM nanosystem, which can realize acute targeted delivery to the tumour site, lactate depletion, promoted reactive oxygen species (ROS) induction, and enhanced the effect of TPZ, demonstrating a potential synergistic combination of cancer therapy with better efficacy and biosafety.
Kalyane, D.; Raval, N.; Maheshwari, R.; Tambe, V.; Kalia, K.; Tekade, R. K. Employment of enhanced permeability and retention (EPR) effect: Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater. Sci. Eng. C 2019, 98, 1252–1276.
Prabhakar, U.; Maeda, H.; Jain, R. K.; Sevick-Muraca, E. M.; Zamboni, W.; Farokhzad, O. C.; Barry, S. T.; Gabizon, A.; Grodzinski, P.; Blakey, D. C. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 2013, 73, 2412–2417.
Golombek, S. K.; May, J. N.; Theek, B.; Appold, L.; Drude, N.; Kiessling, F.; Lammers, T. Tumor targeting via EPR: Strategies to enhance patient responses. Adv. Drug Deliv. Rev. 2018, 130, 17–38.
Sindhwani, S.; Syed, A. M.; Ngai, J.; Kingston, B. R.; Maiorino, L.; Rothschild, J.; MacMillan, P.; Zhang, Y. W.; Rajesh, N. U.; Hoang, T. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 2020, 19, 566–575.
De Lázaro, I.; Mooney, D. J. A nanoparticle’s pathway into tumours. Nat. Mater. 2020, 19, 486–487.
Valko, M.; Morris, H.; Cronin, M. T. D. Metals, toxicity and oxidative stress. Curr. Med. Chem. 2005, 12, 1161–1208.
Lin, L. S.; Huang, T.; Song, J. B.; Ou, X. Y.; Wang, Z. T.; Deng, H. Z.; Tian, R.; Liu, Y. J.; Wang, J. F.; Liu, Y. et al. Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy. J. Am. Chem. Soc. 2019, 141, 9937–9945.
Tang, Z. M.; Zhao, P. R.; Wang, H.; Liu, Y. Y.; Bu, W. B. Biomedicine meets fenton chemistry. Chem. Rev. 2021, 121, 1981–2019.
Zhao, P. R.; Jiang, Y. Q.; Tang, Z. M.; Li, Y. L.; Sun, B. X.; Wu, Y. L.; Wu, J. Y.; Liu, Y. Y.; Bu, W. B. Constructing electron levers in perovskite nanocrystals to regulate the local electron density for intensive chemodynamic therapy. Angew. Chem., Int. Ed. 2021, 60, 8905–8912.
Zhang, H. L.; Li, J. J.; Chen, Y.; Wu, J. Y.; Wang, K.; Chen, L. J.; Wang, Y.; Jiang, X. W.; Liu, Y. Y.; Wu, Y. L. et al. Magneto-electrically enhanced intracellular catalysis of FePt-FeC heterostructures for chemodynamic therapy. Adv. Mater. 2021, 33, 2100472.
Lu, B.; Chen, X. B.; Ying, M. D.; He, Q. J.; Cao, J.; Yang, B. The role of ferroptosis in cancer development and treatment response. Front. Pharmacol. 2018, 8, 992.
Angeli, J. P. F.; Krysko, D. V.; Conrad, M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat. Rev. Cancer 2019, 19, 405–414.
Zhang, C.; Bu, W. B.; Ni, D. L.; Zhang, S. J.; Li, Q.; Yao, Z. W.; Zhang, J. W.; Yao, H. L.; Wang, Z.; Shi, J. L. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction. Angew. Chem., Int. Ed. 2016, 55, 2101–2106.
Tang, Z. M.; Liu, Y. Y.; He, M. Y.; Bu, W. B. Chemodynamic therapy: Tumour microenvironment-mediated fenton and fenton-like reactions. Angew. Chem., Int. Ed. 2019, 58, 946–956.
Wang, W. Q.; Jin, Y. L.; Xu, Z. A.; Liu, X.; Bajwa, S. Z.; Khan, W. S.; Yu, H. J. Stimuli-activatable nanomedicines for chemodynamic therapy of cancer. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 12, e1614.
Fu, J. K.; Shao, Y. R.; Wang, L. Y.; Zhu, Y. C. Lysosome-controlled efficient ROS overproduction against cancer cells with a high pH-responsive catalytic nanosystem. Nanoscale 2015, 7, 7275–7283.
Zhu, H. M.; Cao, G. D.; Qiang, C.; Fu, Y. K.; Wu, Y. L.; Li, X.; Han, G. R. Hollow ferric-tannic acid nanocapsules with sustained O2 and ROS induction for synergistic tumor therapy. Biomater. Sci. 2020, 8, 3844–3855.
DiSilvestro, P. A.; Ali, S.; Craighead, P. S.; Lucci, J. A.; Lee, Y. C.; Cohn, D. E.; Spirtos, N. M.; Tewari, K. S.; Muller, C.; Gajewski, W. H. et al. Phase III randomized trial of weekly cisplatin and irradiation versus cisplatin and tirapazamine and irradiation in stages IB2, IIA, IIB, IIIB, and IVA cervical carcinoma limited to the pelvis: A Gynecologic Oncology Group study. J. Clin. Oncol. 2014, 32, 458–464.
Rischin, D.; Peters, L. J.; O’Sullivan, B.; Giralt, J.; Fisher, R.; Yuen, K.; Trotti, Y. A.; Bernier, J.; Bourhis, J.; Ringash, J. et al. Tirapazamine, cisplatin, and radiation versus cisplatin and radiation for advanced squamous cell carcinoma of the head and neck (TROG 02.02, HeadSTART): A phase III trial of the Trans-Tasman Radiation Oncology Group. J. Clin. Oncol. 2010, 28, 2989–2995.
Guo, Y. X.; Jia, H. R.; Zhang, X. D.; Zhang, X. P.; Sun, Q.; Wang, S. Z.; Zhao, J.; Wu, F. G. A glucose/oxygen-exhausting nanoreactor for starvation- and hypoxia-activated sustainable and cascade chemo-chemodynamic therapy. Small 2020, 16, 2000897.
Liu, Y. Y.; Jiang, Y. Q.; Zhang, M.; Tang, Z. M.; He, M. Y.; Bu, W. B. Modulating hypoxia via nanomaterials chemistry for efficient treatment of solid tumors. Acc. Chem. Res. 2018, 51, 2502–2511.
Sun, K.; Tang, Y.; Li, Q.; Yin, S. Y.; Qin, W. P.; Yu, J. B.; Chiu, D. T.; Liu, Y. B.; Yuan, Z.; Zhang, X. J. et al. In vivo dynamic monitoring of small molecules with implantable polymer-dot transducer. ACS Nano 2016, 10, 6769–6781.
Hu, Y. H.; Cheng, H. J.; Zhao, X. Z.; Wu, J. J. X.; Muhammad, F.; Lin, S. C.; He, J.; Zhou, L. Q.; Zhang, C. P.; Deng, Y. et al. Surface-enhanced Raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano 2017, 11, 5558–5566.
Chu, Q.; Zhu, H. M.; Liu, B.; Cao, G. D.; Fang, C.; Wu, Y. L.; Li, X.; Han, G. R. Delivery of amino acid oxidase via catalytic nanocapsules to enable effective tumor inhibition. J. Mater. Chem. B 2020, 8, 8546–8557.
Ma, Z. Y.; Zhang, Y. F.; Dai, X. X.; Zhang, W. Y.; Foda, M. F.; Zhang, J.; Zhao, Y. L.; Han, H. Y. Selective thrombosis of tumor for enhanced hypoxia-activated prodrug therapy. Adv. Mater. 2021, 33, 2104504.
Yang, S. C.; Tang, Z. H.; Hu, C. Y.; Zhang, D. W.; Shen, N.; Yu, H. Y.; Chen, X. S. Selectively potentiating hypoxia levels by combretastatin A4 nanomedicine: Toward highly enhanced hypoxia-activated prodrug tirapazamine therapy for metastatic tumors. Adv. Mater. 2019, 31, 1805955.
Lv, J.; Li, P. Mesothelin as a biomarker for targeted therapy. Biomark. Res. 2019, 7, 18.
Hassan, R.; Blumenschein, G. R. Jr.; Moore, K. N.; Santin, A. D.; Kindler, H. L.; Nemunaitis, J. J.; Seward, S. M.; Thomas, A.; Kim, S. K.; Rajagopalan, P. et al. First-in-human, multicenter, phase I dose-escalation and expansion study of anti-mesothelin antibody-drug conjugate anetumab ravtansine in advanced or metastatic solid tumors. J. Clin. Oncol. 2020, 38, 1824–1835.
Beatty, G. L.; O’Hara, M. H.; Lacey, S. F.; Torigian, D. A.; Nazimuddin, F.; Chen, F.; Kulikovskaya, I. M.; Soulen, M. C.; McGarvey, M.; Nelson, A. M. et al. Activity of mesothelin-specific chimeric antigen receptor T cells against pancreatic carcinoma metastases in a phase 1 trial. Gastroenterology 2018, 155, 29–32.
Wang, H. H.; Cheng, L.; Ma, S.; Ding, L. M.; Zhang, W.; Xu, Z. B.; Li, D. D.; Gao, L. Z. Self-assembled multiple-enzyme composites for enhanced synergistic cancer starving-catalytic therapy. ACS Appl. Mater. Interfaces 2020, 12, 20191–20201.
Grasset, E. M.; Dunworth, M.; Sharma, G.; Loth, M.; Tandurella, J.; Cimino-Mathews, A.; Gentz, M.; Bracht, S.; Haynes, M.; Fertig, E. J. et al. Triple-negative breast cancer metastasis involves complex epithelial-mesenchymal transition dynamics and requires vimentin. Sci. Transl. Med. 2022, 14, eabn7571.
Huo, J. W.; Li, J.; Liu, Y.; Yang, L. B.; Cao, X. R.; Zhao, C.; Lu, Y. C.; Zhou, W.; Li, S. M.; Liu, J. N. et al. Amphiphilic aminated derivatives of [60]fullerene as potent inhibitors of tumor growth and metastasis. Adv. Sci. (Weinh. ) 2022, 9, 2201541.
Cui, Y. N.; Zhao, M. D.; Yang, Y. D.; Xu, R. L.; Tong, L.; Liang, J.; Zhang, X. D.; Sun, Y.; Fan, Y. J. Reversal of epithelial-mesenchymal transition and inhibition of tumor stemness of breast cancer cells through advanced combined chemotherapy. Acta Biomater. 2022, 152, 380–392.
Gao, F.; Tang, Y.; Liu, W. L.; Zou, M. Z.; Huang, C.; Liu, C. J.; Zhang, X. Z. Intra/extracellular lactic acid exhaustion for synergistic metabolic therapy and immunotherapy of tumors. Adv. Mater. 2019, 31, 1904639.