AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A robust solid electrolyte interphase enabled by solvate ionic liquid for high-performance sulfide-based all-solid-state lithium metal batteries

Jingguang Yi1,2Chong Yan3Dan Zhou1( )Li-Zhen Fan1( )
Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
School of electrical engineering and automation, Luoyang Institute of Science and Technology, Luoyang 471023, China
Shanxi Research Institute for Clean Energy, Tsinghua University, Taiyuan 030032, China
Show Author Information

Graphical Abstract

A novel solvate ionic liquid (LiG3, “G3” is triethylene glycol dimethyl ether and “Li” is lithium bis(trifluoromethanesulfonyl)imide) is creatively designed to modify the lithium anodeelectrolyte interface to maintain the interfacial stability and suppress the growth of lithium dendrites. As expected, the assembled cells of LiNbO3@NCM622/LPSCl/Li(LiG3) exhibit excellent electrochemical performance.

Abstract

All-solid-state lithium metal batteries (ASSLMBs) that incorporate solid electrolyte (SE) and lithium metal anode suggest considerable potential in addressing the security concerns and energy density limitation of conventional lithium-ion batteries (LIBs). However, the practical application of ASSLMBs is always restricted by the interfacial instability of lithium metal anode/electrolyte and inevitable lithium dendrites propagation in SE. Herein, a solvate ionic liquid is adopted to modify the interface stability of lithium metal anode/electrolyte and inhibit the growth of lithium dendrites via an in-situ formation of a robust solid electrolyte interphase (SEI) on the surface of lithium metal anode. Consequently, the ASSLMBs assembled with Li6PS5Cl (LPSCl) electrolyte, lithium metal anode that protected by robust SEI layer, and LiNbO3@NCM622 cathode exhibit high initial capacity of 126.5 mAh·g−1 and improved cycling stability with a capacity retention of 80.3% over 60 cycles at 0.1 C. This work helps to provide a facile route for the design of robust SEI in the application of ASSLMBs.

Electronic Supplementary Material

Download File(s)
5304_ESM.pdf (512.7 KB)

References

[1]

Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.

[2]

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

[3]

Pei, K.; Kim, S. Y.; Li, J. Electrochemically stable lithium-ion and electron insulators (LEIs) for solid-state batteries. Nano Res. 2022, 15, 1213–1220.

[4]

Fan, L. Z.; He, H. C.; Nan, C. W. Tailoring inorganic-polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 2021, 6, 1003–1019.

[5]

Wang, B. Y.; Wang, G. X, ; He, P. G.; Fan, L. Z. Rational design of ultrathin composite solid-state electrolyte for high-performance lithium metal batteries. J. Membrane Sci. 2022, 642, 119952.

[6]

Liang, Y. H.; Liu, H.; Wang, G. X.; Wang, C.; Ni, Y.; Nan, C. W.; Fan, L. Z. Challenges, interface engineering, and processing strategies toward practical sulfide-based all-solid-state lithium batteries. InfoMat 2022, 4, e12292.

[7]

Kisu, K.; Kim, S.; Yoshida, R.; Oguchi, H.; Toyama, N.; Orimo, S. I. Microstructural analyses of all-solid-state Li-S batteries using LiBH4-based solid electrolyte for prolonged cycle performance. J. Energy Chem. 2020, 50, 424–429.

[8]

Chen, L.; Li, Y. T.; Li, S. P.; Fan, L. Z.; Nan, C. W.; Goodenough, J. B. PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018, 46, 176–184.

[9]

Wang, G. X.; Liu, H.; Liang, Y. H.; Wang, C.; Fan, L. Z. Composite polymer electrolyte with three-dimensional ion transport channels constructed by NaCl template for solid-state lithium metal batteries. Energy Storage Mater. 2022, 45, 1212–1219.

[10]

Wang, R.; Yu, J.; Tang, J. T.; Meng, R. J.; Nazar, L. F.; Huang, L. Z.; Liang, X. Insights into dendrite suppression by alloys and the fabrication of a flexible alloy-polymer protected lithium metal anode. Energy Storage Mater. 2020, 32, 178–184.

[11]

Wang, G. X.; He, P. G.; Fan, L. Z. Asymmetric polymer electrolyte constructed by metal-organic framework for solid-state, dendrite-free lithium metal battery. Adv. Funct. Mater. 2021, 31, 2007198.

[12]

Fang, C. C.; Wang, X. F.; Meng, Y. S. Key issues hindering a practical lithium-metal anode. Trends Chem. 2019, 1, 152–158.

[13]

Huang, S. B.; Zhang, H.; Fan, L. Z. Confined lithium deposition triggered by an integrated gradient scaffold for a lithium-metal anode. ACS Appl. Mater. Interfaces 2022, 14, 17539–17546.

[14]

Fuminori, M., Shigenori, H.; Akitoshi, H.; Kiyoharu, T.; Tsutomu, M.; Masahiro, T. All solid-state lithium secondary batteries using high lithium ion conducting Li2S-P2S5 glass-ceramics. Chem. Lett. 2002, 31, 1244–1245.

[15]

Zhao, N.; Khokhar, W.; Bi, Z. J.; Shi, C.; Guo, X. X.; Fan, L. Z.; Nan, C. W. Solid garnet batteries. Joule 2019, 3, 1190–1199.

[16]

Chi, S. S.; Liu, Y. C.; Zhao, N.; Guo, X. X.; Nan, C. W.; Fan, L. Z. Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries. Energy Storage Mater. 2019, 17, 309–316.

[17]

Li, N. W.; Shi, Y.; Yin, Y. X.; Zeng, X. X.; Li, J. Y.; Li, C. J.; Wan, L. J.; Wen, R.; Guo, Y. G. A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew. Chem., Int. Ed. 2018, 57, 1505–1509.

[18]

Huo, H. Y.; Li, X. N.; Chen, Y.; Liang, J. N.; Deng, S. X.; Gao, X. J.; Doyle-Davis, K.; Li, R. Y.; Guo, X. X.; Shen, Y. et al. Bifunctional composite separator with a solid-state-battery strategy for dendrite-free lithium metal batteries. Energy Storage Mater. 2020, 29, 361–366.

[19]

Cheng, X. B.; Zhao, C. Z.; Yao, Y. X.; Liu, H.; Zhang, Q. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes. Chem 2019, 5, 74–96.

[20]

Hu, J. K.; He, P. G.; Zhang, B. C.; Wang, B. Y.; Fan, L. Z. Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries. Energy Storage Mater. 2020, 26, 283–289.

[21]

Seino, Y.; Ota, T.; Takada, K.; Hayashi, A.; Tatsumisago, M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 2014, 7, 627–631.

[22]

Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K. et al. A lithium superionic conductor. Nat. Mater. 2011, 10, 682–686.

[23]

Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 2016, 1, 16030.

[24]

Yi, J. G.; Chen, L.; Liu, Y. C.; Geng, H. X.; Fan, L. Z. High capacity and superior cyclic performances of all-solid-state lithium-sulfur batteries enabled by a high-conductivity Li10SnP2S12 solid electrolyte. ACS Appl. Mater. Interfaces 2019, 11, 36774–36781.

[25]

Yi, J. G.; Zhou, D.; Liang, Y. H.; Liu, H.; Ni, H. F.; Fan, L. Z. Enabling high-performance all-solid-state lithium batteries with high ionic conductive sulfide-based composite solid electrolyte and ex-situ artificial SEI film. J. Energy Chem. 2021, 58, 17–24.

[26]

Tao, Y. C.; Chen, S. J.; Liu, D.; Peng, G.; Yao, X. Y.; Xu, X. X. Lithium superionic conducting oxysulfide solid electrolyte with excellent stability against lithium metal for all-solid-state cells. J. Electrochem. Soc. 2016, 163, A96–A101.

[27]

Wenzel, S.; Sedlmaier, S. J.; Dietrich, C.; Zeier, W. G.; Janek, J. Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ionics 2018, 318, 102–112.

[28]

Auvergniot, J.; Cassel, A.; Ledeuil, J. B.; Viallet, V.; Seznec, V.; Dedryvère, R. Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries. Chem. Mater. 2017, 29, 3883–3890.

[29]

Liu, H.; He, P.; Wang, G.; Liang, Y.; Wang, C.; Fan, L.-Z. Thin, flexible sulfide-based electrolyte film and its interface engineering for high performance solid-state lithium metal batteries. Chem. Eng. J. 2022, 430, 132991.

[30]

Yao, X. Y.; Huang, N.; Han, F. D.; Zhang, Q.; Wan, H. L.; Mwizerwa, J. P.; Wang, C. S.; Xu, X. X. High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Adv. Energy Mater. 2017, 7, 1602923.

[31]

Shin, B. R.; Nam, Y. J.; Oh, D. Y.; Kim, D. H.; Kim, J. W.; Jung, Y. S. Comparative study of TiS2/Li-in all-solid-state lithium batteries using glass-ceramic Li3PS4 and Li10GeP2S12 solid electrolytes. Electrochim. Acta 2014, 146, 395–402.

[32]

Yu, Z. X.; Shang, S. L.; Gao, Y.; Wang, D. W.; Li, X. L.; Liu, Z. K.; Wang, D. H. A quaternary sodium superionic conductor-Na10.8Sn1.9PS11.8. Nano Energy 2018, 47, 325–330.

[33]

Wang, C. H.; Zhao, Y.; Sun, Q.; Li, X.; Liu, Y. L.; Liang, J. W.; Li, X. N.; Lin, X. T.; Li, R. Y.; Adair, K. R. et al. Stabilizing interface between Li10SnP2S12 and Li metal by molecular layer deposition. Nano Energy 2018, 53, 168–174.

[34]

Duan, H.; Yin, Y. X.; Shi, Y.; Wang, P. F.; Zhang, X. D.; Yang, C. P.; Shi, J. L.; Wen, R.; Guo, Y. G.; Wan, L. J. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers. J. Am. Chem. Soc. 2018, 140, 82–85.

[35]

Zhou, W. D.; Wang, S. F.; Li, Y. T.; Xin, S.; Manthiram, A.; Goodenough, J. B. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc. 2016, 138, 9385–9388.

[36]

Takashi, T.; Kazuki, Y.; Takeshi, H.; Mizuho, T.; Megumi, N.; Yuichi, K.; Naoki, T.; Kaoru, D.; Masayoshi, W. Physicochemical properties of glyme-Li salt complexes as a new family of room-temperature ionic liquids. Chem. Lett. 2010, 39, 753–755.

[37]

Wang, S.; Zhang, Y. B.; Zhang, X.; Liu, T.; Lin, Y. H.; Shen, Y.; Li, L. L.; Nan, C. W. High-conductivity argyrodite Li6PS5Cl solid electrolytes prepared via optimized sintering processes for all-solid-state lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 42279–42285.

[38]

Deiseroth, H. J.; Kong, S. T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiß, T.; Schlosser, M. Li6PS5X: A class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew. Chem., Int. Ed. 2008, 47, 755–758.

[39]

Guo, J.; Wen, Z. Y.; Wu, M. F.; Jin, J.; Liu, Y. Vinylene carbonate-LiNO3: A hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode. Electrochem. Commun. 2015, 51, 59–63.

[40]

Zhang, Y. J.; Wang, W.; Tang, H.; Bai, W. Q.; Ge, X.; Wang, X. L.; Gu, C. D.; Tu, J. P. An ex-situ nitridation route to synthesize Li3N-modified Li anodes for lithium secondary batteries. J. Power Sources 2015, 277, 304–311.

[41]

Wang, Q. D.; Yao, Z. P.; Zhao, C. L.; Verhallen, T.; Tabor, D. P.; Liu, M.; Ooms, F.; Kang, F. Y.; Aspuru-Guzik, A.; Hu, Y. S. et al. Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries. Nat. Commun. 2020, 11, 4188.

[42]

Chen, X.; Hou, T. Z.; Li, B.; Yan, C.; Zhu, L.; Guan, C.; Cheng, X. B.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Towards stable lithium-sulfur batteries: Mechanistic insights into electrolyte decomposition on lithium metal anode. Energy Storage Mater. 2017, 8, 194–201.

[43]

Sheng, O. W.; Zheng, J. H.; Ju, Z. J.; Jin, C. B.; Wang, Y.; Chen, M.; Nai, J. W.; Liu, T. F.; Zhang, W. K.; Liu, Y. J. et al. In situ construction of a LiF-enriched interface for stable all-solid-state batteries and its origin revealed by Cryo-TEM. Adv. Mater. 2020, 32, 2000223.

[44]

Fu, L.; Wang, X. C.; Wang, L.; Wan, M. T.; Li, Y. J.; Cai, Z.; Tan, Y. C.; Li, G. C.; Zhan, R. M.; Seh, Z. W. et al. A salt-in-metal anode: Stabilizing the solid electrolyte interphase to enable prolonged battery cycling. Adv. Funct. Mater. 2021, 31, 2010602.

[45]

Zhang, X. Q.; Cheng, X. B.; Chen, X.; Yan, C.; Zhang, Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 2017, 27, 1605989.

[46]

Pan, J.; Cheng, Y. T.; Qi, Y. General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes. Phys. Rev. B 2015, 91, 134116.

[47]

Cheng, X. B.; Yan, C.; Huang, J. Q.; Li, P.; Zhu, L.; Zhao, L. D.; Zhang, Y. Y.; Zhu, W. C.; Yang, S. T.; Zhang, Q. The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection. Energy Storage Mater. 2017, 6, 18–25.

[48]

Chi, S. S.; Liu, Y. C.; Song, W. L.; Fan, L. Z.; Zhang, Q. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode. Adv. Funct. Mater. 2017, 27, 1700348.

[49]

Choudhury, S. Archer, L. A. Lithium fluoride additives for stable cycling of lithium batteries at high current densities. Adv. Electron. Mater. 2016, 2, 1500246.

[50]

Xu, R. C.; Han, F. D.; Ji, X.; Fan, X. L.; Tu, J. P.; Wang, C. S. Interface engineering of sulfide electrolytes for all-solid-state lithium batteries. Nano Energy 2018, 53, 958–966.

Nano Research
Pages 8411-8416
Cite this article:
Yi J, Yan C, Zhou D, et al. A robust solid electrolyte interphase enabled by solvate ionic liquid for high-performance sulfide-based all-solid-state lithium metal batteries. Nano Research, 2023, 16(6): 8411-8416. https://doi.org/10.1007/s12274-022-5304-4
Topics:
Part of a topical collection:

5669

Views

8

Crossref

7

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 30 August 2022
Revised: 23 October 2022
Accepted: 07 November 2022
Published: 13 December 2022
© Tsinghua University Press 2022
Return