AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Atomic scale visualizations of low-angle grain boundary mediated plasticity by coupled dislocation climb and glide in nanoporous gold

Shufen ChuJunnan JiangXiaoran ZhaoBaode SunPan Liu( )
Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Show Author Information

Graphical Abstract

In this work, coupled grain boundary dislocation climb and glide behaviors in nanoporous gold were directly observed at atomic scale via in situ straining inside a Cs-corrected transmission electron microscopy.

Abstract

Grain boundaries (GBs), as a prevalent structural characteristic, play a crucial role in the deformation of nanoporous metals with nanosized grains and ligaments. However, the fundamental understanding of GB-mediated deformation is still lacking because the plastic behavior of discrete ligaments involving GBs remains to be unknown. Here, we report atomic scale visualizations of coupled GB dislocation climb and glide in nanoporous gold ligaments with low-angle GBs via in situ tensile straining inside a Cs-corrected transmission electron microscope. The zig-zag motion paths of GB dislocations are precisely determined by real-time tracking of the movements of dislocation cores. The concurrent climb and glide of the dislocation arrays are confined to a narrow GB region, greatly enhancing GB diffusion in the bicrystal ligament. Our findings of coupled dislocation climb and glide shine a light on the room-temperature deformation of nanoporous metals and provide a time-dependent atomic-level physical image for GB engineering.

Electronic Supplementary Material

Download File(s)
12274_2022_5306_MOESM1_ESM.pdf (161.2 KB)
12274_2022_5306_MOESM2_ESM.wmv (16.4 MB)
12274_2022_5306_MOESM3_ESM.pdf (2.3 MB)

References

[1]

Li, J.; Yin, H. M.; Li, X. B.; Okunishi, E.; Shen, Y. L.; He, J.; Tang, Z. K.; Wang, W. X.; Yücelen, E.; Li, C. et al. Surface evolution of a Pt-Pd-Au electrocatalyst for stable oxygen reduction. Nat. Energy 2017, 2, 17111.

[2]

Fujita, T.; Guan, P. F.; McKenna, K.; Lang, X. Y.; Hirata, A.; Zhang, L.; Tokunaga, T.; Arai, S.; Yamamoto, Y.; Tanaka, N. et al. Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 2012, 11, 775–780.

[3]

Wittstock, A.; Zielasek, V.; Biener, J.; Friend, C. M.; Bäumer, M. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 2010, 327, 319–322.

[4]

Chen, Q.; Ding, Y.; Chen, M. W. Nanoporous metal by dealloying for electrochemical energy conversion and storage. MRS Bull. 2018, 43, 43–48.

[5]

Şeker, E.; Shih, W. C.; Stine, K. J. Nanoporous metals by alloy corrosion: Bioanalytical and biomedical applications. MRS Bull. 2018, 43, 49–56.

[6]

Biener, J.; Hodge, A. M.; Hayes, J. R.; Volkert, C. A.; Zepeda-Ruiz, L. A.; Hamza, A. V.; Abraham, F. F. Size effects on the mechanical behavior of nanoporous Au. Nano Lett. 2006, 6, 2379–2382.

[7]

Shi, S.; Li, Y.; Ngo-Dinh, B. N.; Markmann, J.; Weissmüller, J. Scaling behavior of stiffness and strength of hierarchical network nanomaterials. Science 2021, 371, 1026–1033.

[8]

Liu, L. Z.; Zhang, Y. Y.; Xie, H.; Jin, H. J. Transition from homogeneous to localized deformation in nanoporous gold. Phys. Rev. Lett. 2021, 127, 095501.

[9]

Jin, H. J.; Weissmüller, J.; Farkas, D. Mechanical response of nanoporous metals: A story of size, surface stress, and severed struts. MRS Bull. 2018, 43, 35–42.

[10]

Zhang, Y. Y.; Xie, H.; Liu, L. Z.; Jin, H. J. Surface triple junctions govern the strength of a nanoscale solid. Phys. Rev. Lett. 2021, 126, 235501.

[11]

Biener, J.; Hodge, A. M.; Hamza, A. V. Microscopic failure behavior of nanoporous gold. Appl. Phys. Lett. 2005, 87, 121908.

[12]

Liu, P.; Wei, X.; Song, S. X.; Wang, L. H.; Hirata, A.; Fujita, T.; Han, X. D.; Zhang, Z.; Chen, M. W. Time-resolved atomic-scale observations of deformation and fracture of nanoporous gold under tension. Acta Mater. 2019, 165, 99–108.

[13]

Sun, X. Y.; Xu, G. K.; Li, X. Y.; Feng, X. Q.; Gao, H. J. Mechanical properties and scaling laws of nanoporous gold. J. Appl. Phys. 2013, 113, 023505.

[14]

Gwak, E. J.; Kim, J. Y. Weakened flexural strength of nanocrystalline nanoporous gold by grain refinement. Nano Lett. 2016, 16, 2497–2502.

[15]

Song, E.; Jeon, H.; Gwak, E. J.; Kang, J. Y.; Kim, J. Y. Grain boundary-assisted resistance to crack propagation in nanoporous gold with fine grains. Scr. Mater. 2022, 215, 114708.

[16]

Azizi, A.; Zou, X. L.; Ercius, P.; Zhang, Z. H.; Elías, A. L.; Perea-López, N.; Stone, G.; Terrones, M.; Yakobson, B. I.; Alem, N. Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide. Nat. Commun. 2014, 5, 4867.

[17]

Zhang, J. F.; Li, Y. R.; Li, X. C.; Zhai, Y. D.; Zhang, Q.; Ma, D. F.; Mao, S. C.; Deng, Q. S.; Li, Z. P.; Li, X. Q. et al. Timely and atomic-resolved high-temperature mechanical investigation of ductile fracture and atomistic mechanisms of tungsten. Nat. Commun. 2021, 12, 2218.

[18]

Sun, S. D.; Li, D. W.; Yang, C. P.; Fu, L. B.; Kong, D. L.; Lu, Y.; Guo, Y. Z.; Liu, D. M.; Guan, P. F.; Zhang, Z. et al. Direct atomic-scale observation of ultrasmall Ag nanowires that exhibit fcc, bcc, and hcp structures under bending. Phys. Rev. Lett. 2022, 128, 015701.

[19]

Wang, L. H.; Zhang, Y.; Zeng, Z.; Zhou, H.; He, J.; Liu, P.; Chen, M. W.; Han, J.; Srolovitz, D. J.; Teng, J. et al. Tracking the sliding of grain boundaries at the atomic scale. Science 2022, 375, 1261–1265.

[20]

Zhu, Q.; Huang, Q. S.; Guang, C.; An, X. H.; Mao, S. X.; Yang, W.; Zhang, Z.; Gao, H. J.; Zhou, H. F.; Wang, J. W. Metallic nanocrystals with low angle grain boundary for controllable plastic reversibility. Nat. Commun. 2020, 11, 3100.

[21]

Zhu, Q.; Cao, G.; Wang, J. W.; Deng, C.; Li, J. X.; Zhang, Z.; Mao, S. X. In situ atomistic observation of disconnection-mediated grain boundary migration. Nat. Commun. 2019, 10, 156.

[22]

Huang, Q. S.; Zhu, Q.; Chen, Y. B.; Gong, M. Y.; Li, J. X.; Zhang, Z.; Yang, W.; Wang, J.; Zhou, H. F.; Wang, J. W. Twinning-assisted dynamic adjustment of grain boundary mobility. Nat. Commun. 2021, 12, 6695.

[23]

Wang, L. H.; Teng, J.; Liu, P.; Hirata, A.; Ma, E.; Zhang, Z.; Chen, M. W.; Han, X. D. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat. Commun. 2014, 5, 4402.

[24]

Liu, P.; Mao, S. C.; Wang, L. H.; Han, X. D.; Zhang, Z. Direct dynamic atomic mechanisms of strain-induced grain rotation in nanocrystalline, textured, columnar-structured thin gold films. Scr. Mater. 2011, 64, 343–346.

[25]

Huang, M. S.; Li, Z. H.; Tong, J. The influence of dislocation climb on the mechanical behavior of polycrystals and grain size effect at elevated temperature. Int. J. Plast. 2014, 61, 112–127.

[26]

Ayas, C.; Deshpande, V. S.; Geers, M. G. D. Tensile response of passivated films with climb-assisted dislocation glide. J. Mech. Phys. Solids 2012, 60, 1626–1643.

[27]

Bakó, B.; Clouet, E.; Dupuy, L. M.; Blétry, M. Dislocation dynamics simulations with climb: Kinetics of dislocation loop coarsening controlled by bulk diffusion. Philos. Mag. 2011, 91, 3173–3191.

[28]

Keralavarma, S. M.; Benzerga, A. A. High-temperature discrete dislocation plasticity. J. Mech. Phys. Solids 2015, 82, 1–22.

[29]

Geers, M. G. D.; Cottura, M.; Appolaire, B.; Busso, E. P.; Forest, S.; Villani, A. Coupled glide-climb diffusion-enhanced crystal plasticity. J. Mech. Phys. Solids 2014, 70, 136–153.

[30]

Hÿtch, M. J.; Snoeck, E.; Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 1998, 74, 131–146.

[31]
Hirth, J. P.; Lothe, J. Theory of Dislocations; John Wiley & Sons: Hoboken, 1982.
[32]

Wang, X.; Zheng, S. X.; Shinzato, S.; Fang, Z. W.; He, Y.; Zhong, L.; Wang, C. M.; Ogata, S.; Mao, S. X. Atomistic processes of surface-diffusion-induced abnormal softening in nanoscale metallic crystals. Nat. Commun. 2021, 12, 5237.

[33]

Sun, S. D.; Kong, D. L.; Li, D. H.; Liao, X. Z.; Liu, D. M.; Mao, S. C.; Zhang, Z.; Wang, L. H.; Han, X. D. Atomistic mechanism of stress-induced combined slip and diffusion in sub-5 nanometer-sized Ag nanowires. ACS Nano 2019, 13, 8708–8716.

[34]

Liu, P.; Wang, L. H.; Yue, Y. H.; Song, S. X.; Wang, X. D.; Reddy, K. M.; Liao, X. Z.; Zhang, Z.; Chen, M. W.; Han, X. D. Room-temperature superplasticity in Au nanowires and their atomistic mechanisms. Nanoscale 2019, 11, 8727–8735.

[35]

Lu, Y.; Song, J.; Huang, J. Y.; Lou, J. Surface dislocation nucleation mediated deformation and ultrahigh strength in sub-10-nm gold nanowires. Nano Res. 2011, 4, 1261–1267.

[36]

Zheng, H.; Cao, A. J.; Weinberger, C. R.; Huang, J. Y.; Du, K.; Wang, J. B.; Ma, Y. Y.; Xia, Y. N.; Mao, S. X. Discrete plasticity in sub-10-nm-sized gold crystals. Nat. Commun. 2010, 1, 144.

[37]

Keralavarma, S. M.; Cagin, T.; Arsenlis, A.; Benzerga, A. A. Power-law creep from discrete dislocation dynamics. Phys. Rev. Lett. 2012, 109, 265504.

[38]

Guo, Q. N.; Yue, X. D.; Yang, S. E.; Huo, Y. P. Tensile properties of ultrathin copper films and their temperature dependence. Comput. Mater. Sci. 2010, 50, 319–330.

[39]

Wang, J.; Hoagland, R. G.; Misra, A. Room-temperature dislocation climb in metallic interfaces. Appl. Phys. Lett. 2009, 94, 131910.

[40]

Wang, J.; Misra, A. An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr. Opin. Solid State Mater. Sci. 2011, 15, 20–28.

[41]

Chu, S. F.; Liu, P.; Zhang, Y.; Wang, X. D.; Song, S. X.; Zhu, T.; Zhang, Z.; Han, X. D.; Sun, B. D.; Chen, M. W. In situ atomic-scale observation of dislocation climb and grain boundary evolution in nanostructured metal. Nat. Commun. 2022, 13, 4151.

[42]

Li, N.; Wang, J.; Huang, J. Y.; Misra, A.; Zhang, X. In situ TEM observations of room temperature dislocation climb at interfaces in nanolayered Al/Nb composites. Scr. Mater. 2010, 63, 363–366.

[43]

Gu, Y. J.; Xiang, Y.; Srolovitz, D. J.; El-Awady, J. A. Self-healing of low angle grain boundaries by vacancy diffusion and dislocation climb. Scr. Mater. 2018, 155, 155–159.

[44]

Gu, Y. J.; Xiang, Y.; Srolovitz, D. J. Relaxation of low-angle grain boundary structure by climb of the constituent dislocations. Scr. Mater. 2016, 114, 35–40.

[45]

Ovid’ko, I. A.; Reizis, A. B. Grain-boundary dislocation climb and diffusion in nanocrystalline solids. Phys. Solid State 2001, 43, 35–38.

[46]

Burton, B. Interface reaction controlled diffusional creep: A consideration of grain boundary dislocation climb sources. Mater. Sci. Eng. 1972, 10, 9–14.

[47]
Han, X. D.; Liu, P.; Zhang, Y. F.; Yue, Y. H.; Zhang, Z. Device and method for measuring electromechanical properties and microstructure of nano-materials under stress state. U.S. Patent 8069733, December 17, 2011.
[48]

Galindo, P. L.; Kret, S.; Sanchez, A. M.; Laval, J. Y.; Yáñez, A.; Pizarro, J.; Guerrero, E.; Ben, T.; Molina, S. I. The Peak Pairs algorithm for strain mapping from HRTEM images. Ultramicroscopy 2007, 107, 1186–1193.

Nano Research
Pages 2622-2629
Cite this article:
Chu S, Jiang J, Zhao X, et al. Atomic scale visualizations of low-angle grain boundary mediated plasticity by coupled dislocation climb and glide in nanoporous gold. Nano Research, 2023, 16(2): 2622-2629. https://doi.org/10.1007/s12274-022-5306-2
Topics:

6323

Views

3

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 26 September 2022
Revised: 07 November 2022
Accepted: 08 November 2022
Published: 21 December 2022
© Tsinghua University Press 2022
Return