AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Nanomedicine-based treatment: An emerging therapeutical strategy for pulmonary hypertension

Shuya Wang1,2Qiaohui Chen1,2Tianjiao Zhao1,2Kelong Ai1,2( )Changping Hu1,2( )
Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
Hunan Provincial Key Laboratory of Cardiovascular Research, Changsha 410078, China
Show Author Information

Graphical Abstract

This review systematically outlines the research progress of novel nanomedicines for the treatment of pulmonary hypertension (PH) in recent years, providing new insights into the future development of highly efficient and biocompatible nanomedicines based on PH therapy.

Abstract

Pulmonary hypertension (PH) can cause breathing difficulty, a rapid decline of exercise capacity, heart failure, and eventually death of the patients. The latest epidemiological study demonstrates that PH has a much higher incidence than previously thought. PH is still a highly fatal disease due to the many disadvantages of the current drugs, such as short half-life, lack of targeting, and potent side effects. The PH pathological features offer great opportunities for nanomedicines for PH. Recently, emerging nanomedicines demonstrated great advantages in the therapeutic effect of PH by enhancing the accumulation of drugs in PH lesion, optimizing drug efficacy, and minimizing drug side effects. However, this promising field of cross-cutting research is far from being widely explored due to the huge professional barriers. To solve this problem, we provide a comprehensive review for the latest progresses of nanomedicines in the treatment of PH. Firstly, we systematical summarized the PH pathological features and the current clinical drug treatment of PH. The advantages of nanomedicines are also deeply discussed in the treatment of PH. Subsequently, we focused on the research progresses of nanomedicines in PH through three aspects: advanced nano-drug delivery system for traditional drugs and new target drugs, gene therapy-based nanomedicines, and other nanomedicines for the treatment of PH. Finally, we also discussed the prospects and challenges for the clinical application of nanomedicines in PH, and provided directions for the research and development of nanomedicines for PH treatment in the future.

References

[1]

Poch, D.; Mandel, J. Pulmonary hypertension. Ann. Intern. Med. 2021, 174, ITC49–ITC64.

[2]

Stewart, S.; Strange, G. A.; Playford, D. The challenge of an expanded therapeutic window in pulmonary hypertension. Nat. Rev. Cardiol. 2020, 17, 195–197.

[3]

Hoeper, M. M.; Humbert, M.; Souza, R.; Idrees, M.; Kawut, S. M.; Sliwa-Hahnle, K.; Jing, Z. C.; Gibbs, J.; S. R. A global view of pulmonary hypertension. Lancet Resp. Med. 2016, 4, 306–322.

[4]

Naeije, R.; Richter, M. J.; Rubin, L. J. The physiological basis of pulmonary arterial hypertension. Eur. Respir. J. 2022, 59, 2102334.

[5]

Ruopp, N. F.; Cockrill, B. A. Diagnosis and treatment of pulmonary arterial hypertension: A review. JAMA 2022, 327, 1379–1391.

[6]

Kolaitis, N. A.; Lammi, M.; Mazimba, S.; Feldman, J.; McConnell, W.; Sager, J. S.; Raval, A. A.; Simon, M. A.; De Marco, T. HIV-associated pulmonary arterial hypertension: A report from the pulmonary hypertension association registry. Am. J. Respir. Crit. Care. Med. 2022, 205, 1121–1124.

[7]

Omote, K.; Sorimachi, H.; Obokata, M.; Reddy, Y. N. V.; Verbrugge, F. H.; Omar, M.; DuBrock, H. M.; Redfield, M. M.; Borlaug, B. A. Pulmonary vascular disease in pulmonary hypertension due to left heart disease: Pathophysiologic implications. Eur. Heart J. 2022, 43, 3417–3431.

[8]

Fujiwara, T.; Takeda, N.; Hara, H.; Ishii, S.; Numata, G.; Tokiwa, H.; Maemura, S.; Suzuki, T.; Takiguchi, H.; Kubota, Y. et al. Three-dimensional visualization of hypoxia-induced pulmonary vascular remodeling in mice. Circulation 2021, 144, 1452–1455.

[9]

Delcroix, M.; Torbicki, A.; Gopalan, D.; Sitbon, O.; Klok, F. A.; Lang, I.; Jenkins, D.; Kim, N. H.; Humbert, M.; Jais, X. et al. ERS statement on chronic thromboembolic pulmonary hypertension. Eur. Respir. J. 2021, 57, 2002828.

[10]

Satoh, T.; Wang, L. F.; Espinosa-Diez, C.; Wang, B.; Hahn, S. A.; Noda, K.; Rochon, E. R.; Dent, M. R.; Levine, A. R.; Baust, J. J. et al. Metabolic syndrome mediates ROS-miR-193b-NFYA-dependent downregulation of soluble guanylate cyclase and contributes to exercise-induced pulmonary hypertension in heart failure with preserved ejection fraction. Circulation 2021, 144, 615–637.

[11]

Stites, E.; Kumar, D.; Olaitan, O.; John Swanson, S.; Leca, N.; Weir, M.; Bromberg, J.; Melancon, J.; Agha, I.; Fattah, H. et al. High levels of dd-cfDNA identify patients with TCMR 1A and borderline allograft rejection at elevated risk of graft injury. Am. J. Transplant. 2020, 20, 2491–2498.

[12]

Lechuga-Vieco, A. V.; Latorre-Pellicer, A.; Calvo, E.; Torroja, C.; Pellico, J.; Acín-Pérez, R.; García-Gil, M. L.; Santos, A.; Bagwan, N.; Bonzon-Kulichenko, E. et al. Heteroplasmy of wild-type mitochondrial DNA variants in mice causes metabolic heart disease with pulmonary hypertension and frailty. Circulation 2022, 145, 1084–1101.

[13]

Humbert, M.; McLaughlin, V.; Gibbs, J. S. R.; Gomberg-Maitland, M.; Hoeper, M. M.; Preston, I. R.; Souza, R.; Waxman, A.; Escribano Subias, P.; Feldman, J. et al. Sotatercept for the treatment of pulmonary arterial hypertension. N. Engl. J. Med. 2021, 384, 1204–1215.

[14]

Toshner, M.; Rothman, A. IL-6 in pulmonary hypertension: Why novel is not always best. Eur. Respir. J. 2020, 55, 2000314.

[15]

Nie, X. W.; Shen, C. Y.; Tan, J. X.; Wu, Z. Y.; Wang, W.; Chen, Y.; Dai, Y. A.; Yang, X. S.; Ye, S. G.; Chen, J. Y. et al. Periostin: A potential therapeutic target for pulmonary hypertension? Circ. Res. 2020, 127, 1138–1152.

[16]

Li, D.; Shao, N. Y.; Moonen, J. R.; Zhao, Z. X.; Shi, M. Y.; Otsuki, S.; Wang, L. L.; Nguyen, T.; Yan, E.; Marciano, D. P. et al. ALDH1A3 coordinates metabolism with gene regulation in pulmonary arterial hypertension. Circulation 2021, 143, 2074–2090.

[17]

Agarwal, S.; de Jesus Perez, V. A. In defense of the nucleus: NUDT1 and oxidative DNA damage in pulmonary arterial hypertension. Am. J. Respir. Crit. Care. Med. 2021, 203, 541–542.

[18]

Maron, B. A.; Abman, S. H.; Elliott, C. G.; Frantz, R. P.; Hopper, R. K.; Horn, E. M.; Nicolls, M. R.; Shlobin, O. A.; Shah, S. J.; Kovacs, G. et al. Pulmonary arterial hypertension: Diagnosis, treatment, and novel advances. Am. J. Respir. Crit. Care. Med. 2021, 203, 1472–1487.

[19]

Humbert M.; Lau E. M. T. Risk stratification in pulmonary arterial hypertension: Do not forget the patient perspective. Am J Respir Crit Care Med. 2021, 203, 675–677.

[20]

Boucly, A.; Savale, L.; Jaïs, X.; Bauer, F.; Bergot, E.; Bertoletti, L.; Beurnier, A.; Bourdin, A.; Bouvaist, H.; Bulifon, S. et al. Association between initial treatment strategy and long-term survival in pulmonary arterial hypertension. Am. J. Respir. Crit. Care. Med. 2021, 204, 842–854.

[21]

Segura-Ibarra, V.; Amione-Guerra, J.; Cruz-Solbes, A. S.; Cara, F. E.; Iruegas-Nunez, D. A.; Wu, S. H.; Youker, K. A.; Bhimaraj, A.; Torre-Amione, G.; Ferrari, M. et al. Rapamycin nanoparticles localize in diseased lung vasculature and prevent pulmonary arterial hypertension. Int. J. Pharm. 2017, 524, 257–267.

[22]

Deng, Z. C.; Kalin, G. T.; Shi, D. L.; Kalinichenko, V. V. Nanoparticle delivery systems with cell-specific targeting for pulmonary diseases. Am. J. Respir. Cell. Mol. Biol. 2021, 64, 292–307.

[23]

Keshavarz, A.; Alobaida, A.; McMurtry, I. F.; Nozik-Grayck, E.; Stenmark, K. R.; Ahsan, F. CAR, a homing peptide, prolongs pulmonary preferential vasodilation by increasing pulmonary retention and reducing systemic absorption of liposomal fasudil. Mol. Pharm. 2019, 16, 3414–3429.

[24]

Luo, X. M.; Yan, C.; Feng, Y. M. Nanomedicine for the treatment of diabetes-associated cardiovascular diseases and fibrosis. Adv. Drug Deliv. Rev. 2021, 172, 234–248.

[25]

Cheng, Z.; Li, M. Y.; Dey, R.; Chen, Y. H. Nanomaterials for cancer therapy: Current progress and perspectives. J. Hematol. Oncol. 2021, 14, 85.

[26]

Evans, C. E.; Cober, N. D.; Dai, Z. Y.; Stewart, D. J.; Zhao, Y. Y. Endothelial cells in the pathogenesis of pulmonary arterial hypertension. Eur. Respir. J. 2021, 58, 2003957.

[27]

Simons M. Fibroblast growth factors: The keepers of endothelial normalcy. J Clin Invest. 2021, 131, e152716.

[28]

Triposkiadis F.; Xanthopoulos A.; Skoularigis J.; Starling R. C. Therapeutic augmentation of NO-sGC-cGMP signalling: Lessons learned from pulmonary arterial hypertension and heart failure. Heart Fail Rev. 2022, 27, 1991–2003.

[29]

Barnes, H.; Yeoh, H. L.; Fothergill, T.; Burns, A.; Humbert, M.; Williams, T. Prostacyclin for pulmonary arterial hypertension. Cochrane Database Syst. Rev. 2019, 5, CD012785.

[30]

Waxman, A.; Restrepo-Jaramillo, R.; Thenappan, T.; Ravichandran, A.; Engel, P.; Bajwa, A.; Allen, R.; Feldman, J.; Argula, R.; Smith, P. et al. Inhaled treprostinil in pulmonary hypertension due to interstitial lung disease. N. Engl. J. Med. 2021, 384, 325–334.

[31]

Nathan, S. D.; Waxman, A.; Rajagopal, S.; Case, A.; Johri, S.; DuBrock, H.; De La Zerda, D. J.; Sahay, S.; King, C.; Melendres-Groves, L. et al. Inhaled treprostinil and forced vital capacity in patients with interstitial lung disease and associated pulmonary hypertension: A post-hoc analysis of the INCREASE study. Lancet Resp. Med. 2021, 9, 1266–1274.

[32]

Ogo, T.; Shimokawahara, H.; Kinoshita, H.; Sakao, S.; Abe, K.; Matoba, S.; Motoki, H.; Takama, N.; Ako, J.; Ikeda, Y. et al. Selexipag for the treatment of chronic thromboembolic pulmonary hypertension. Eur. Respir. J. 2022, 60, 2101694.

[33]

Tello, K.; Kremer, N.; Richter, M. J.; Gall, H.; Muenks, J.; Ghofrani, A.; Schermuly, R.; Naeije, R.; Kojonazarov, B.; Seeger, W. Inhaled iloprost improves right ventricular load-independent contractility in pulmonary hypertension. Am. J. Respir. Crit. Care. Med. 2022, 206, 111–114.

[34]

Hoeper, M. M.; Al-Hiti, H.; Benza, R. L.; Chang, S. A.; Corris, P. A.; Gibbs, J. S. R.; Grünig, E.; Jansa, P.; Klinger, J. R.; Langleben, D. et al. Switching to riociguat versus maintenance therapy with phosphodiesterase-5 inhibitors in patients with pulmonary arterial hypertension (REPLACE): A multicentre, open-label, randomised controlled trial. Lancet Respir. Med. 2021, 9, 573–584.

[35]

Barnes, H.; Brown, Z.; Burns, A.; Williams, T. Phosphodiesterase 5 inhibitors for pulmonary hypertension. Cochrane Database Syst. Rev. 2019, 1, CD012621.

[36]

Tzoumas, N.; Farrah, T. E.; Dhaun, N.; Webb, D. J. Established and emerging therapeutic uses of PDE type 5 inhibitors in cardiovascular disease. Br. J. Pharmacol. 2020, 177, 5467–5488.

[37]

Boutou, A. K.; Pitsiou, G. Treatment of pulmonary hypertension with riociguat: A review of current evidence and future perspectives. Expert Opin. Pharmacother. 2020, 21, 1145–1155.

[38]

Frey, R.; Becker, C.; Saleh, S.; Unger, S.; van der Mey, D.; Mück, W. Clinical pharmacokinetic and pharmacodynamic profile of riociguat. Clin. Pharmacokinet. 2018, 57, 647–661.

[39]

Cooper, T. J.; Cleland, J. G. F.; Guazzi, M.; Pellicori, P.; Ben Gal, T. Amir, O.; Al-Mohammad, A.; Clark, A. L.; McConnachie, A.; Steine, K. et al. Effects of sildenafil on symptoms and exercise capacity for heart failure with reduced ejection fraction and pulmonary hypertension (the SilHF study): A randomized placebo-controlled multicentre trial. Eur. J. Heart Fail. 2022, 24, 1239–1248.

[40]

Sitbon, O.; Cottin, V.; Canuet, M.; Clerson, P.; Gressin, V.; Perchenet, L.; Bertoletti, L.; Bouvaist, H.; Picard, F.; Prévot, G. et al. Initial combination therapy of macitentan and tadalafil in pulmonary arterial hypertension. Eur. Respir. J. 2020, 56, 2000673.

[41]

Liu, C.; Chen, J. M.; Gao, Y. Q.; Deng, B.; Liu, K. S. Endothelin receptor antagonists for pulmonary arterial hypertension. Cochrane Database Syst. Rev. 2021, 3, CD004434.

[42]

Bellaye, P. S.; Yanagihara, T.; Granton, E.; Sato, S.; Shimbori, C.; Upagupta, C.; Imani, J.; Hambly, N.; Ask, K.; Gauldie, J. et al. Macitentan reduces progression of TGF-β1-induced pulmonary fibrosis and pulmonary hypertension. Eur. Respir. J. 2018, 52, 1701857.

[43]

Lee, H. J.; Kwon, Y. B.; Kang, J. H.; Oh, D. W.; Park, E. S.; Rhee, Y. S.; Kim, J. Y.; Shin, D. H.; Kim, D. W.; Park, C. W. Inhaled bosentan microparticles for the treatment of monocrotaline-induced pulmonary arterial hypertension in rats. J. Control. Release 2021, 329, 468–481.

[44]

Preston, I. R.; Burger, C. D.; Bartolome, S.; Safdar, Z.; Krowka, M.; Sood, N.; Ford, H. J.; Battarjee, W. F.; Chakinala, M. M.; Gomberg-Maitland, M. et al. Ambrisentan in portopulmonary hypertension: A multicenter, open-label trial. J. Heart Lung. Transplant. 2020, 39, 464–472.

[45]

Cascino, T. M.; McLaughlin, V. V. Upfront combination therapy for pulmonary arterial hypertension: Time to be more ambitious than AMBITION. Am. J. Respir. Crit. Care. Med. 2021, 204, 756–759.

[46]

White, R. J.; Vonk-Noordegraaf, A.; Rosenkranz, S.; Oudiz, R. J.; McLaughlin, V. V.; Hoeper, M. M.; Grünig, E.; Ghofrani, H. A.; Chakinala, M. M.; Barberà, J. A. et al. Clinical outcomes stratified by baseline functional class after initial combination therapy for pulmonary arterial hypertension. Respir. Res. 2019, 20, 208.

[47]

D’Alto, M.; Badagliacca, R.; Argiento, P.; Romeo, E.; Farro, A.; Papa, S.; Sarubbi, B.; Russo, M. G.; Vizza, C. D.; Golino, P. et al. Risk reduction and right heart reverse remodeling by upfront triple combination therapy in pulmonary arterial hypertension. Chest 2020, 157, 376–383.

[48]

Chin, K. M.; Sitbon, O.; Doelberg, M.; Feldman, J.; Gibbs, J. S. R.; Grünig, E.; Hoeper, M. M.; Martin, N.; Mathai, S. C.; McLaughlin, V. V. et al. Three- versus two-drug therapy for patients with newly diagnosed pulmonary arterial hypertension. J. Am. Coll. Cardiol. 2021, 78, 1393–1403.

[49]

Kuwana, M.; Blair, C.; Takahashi, T.; Langley, J.; Coghlan, J. G. Initial combination therapy of ambrisentan and tadalafil in connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH) in the modified intention-to-treat population of the AMBITION study: Post hoc analysis. Ann. Rheum. Dis. 2020, 79, 626–634.

[50]

Stollfuss, B.; Richter, M.; Drömann, D.; Klose, H.; Schwaiblmair, M.; Gruenig, E.; Ewert, R.; Kirchner, M. C.; Kleinjung, F.; Irrgang, V. et al. Digital tracking of physical activity, heart rate, and inhalation behavior in patients with pulmonary arterial hypertension treated with inhaled iloprost: Observational study (VENTASTEP). J. Med. Internet. Res. 2021, 23, e25163.

[51]

Yanaka, K.; Guillien, A.; Soumagne, T.; Benet, J.; Piliero, N.; Picard, F.; Pison, C.; Sitbon, O.; Bouvaist, H.; Degano, B. Transition from intravenous epoprostenol to selexipag in pulmonary arterial hypertension: A word of caution. Eur. Respir. J. 2020, 55, 1902418.

[52]

Lau, E. M. T.; Giannoulatou, E.; Celermajer, D. S.; Humbert, M. Epidemiology and treatment of pulmonary arterial hypertension. Nat. Rev. Cardiol. 2017, 14, 603–614.

[53]

Mandras, S. A.; Mehta, H. S.; Vaidya, A. Pulmonary hypertension: A brief guide for clinicians. Mayo. Clin. Proc. 2020, 95, 1978–1988.

[54]

Wang, X. W.; Zhong, X. Y.; Li, J. X.; Liu, Z.; Cheng, L. Inorganic nanomaterials with rapid clearance for biomedical applications. Chem. Soc. Rev. 2021, 50, 8669–8742.

[55]

Thenappan, T.; Ormiston, M. L.; Ryan, J. J.; Archer, S. L. Pulmonary arterial hypertension: Pathogenesis and clinical management. BMJ 2018, 360, j5492.

[56]

Ochoa, C. D.; Wu, R. F.; Terada, L. S. ROS signaling and ER stress in cardiovascular disease. Mol. Aspects Med. 2018, 63, 18–29.

[57]

Kulkarni, J. A.; Witzigmann, D.; Thomson, S. B.; Chen, S.; Leavitt, B. R.; Cullis, P. R.; van der Meel, R. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol. 2021, 16, 630–643.

[58]

Ni, R.; Zhou, J. L.; Hossain, N.; Chau, Y. Virus-inspired nucleic acid delivery system: Linking virus and viral mimicry. Adv. Drug Deliv. Rev. 2016, 106, 3–26.

[59]

Yin, H.; Kanasty, R. L.; Eltoukhy, A. A.; Vegas, A. J.; Dorkin, J. R.; Anderson, D. G. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 2014, 15, 541–555.

[60]

Pullamsetti, S. S.; Schermuly, R.; Ghofrani, A.; Weissmann, N.; Grimminger, F.; Seeger, W. Novel and emerging therapies for pulmonary hypertension. Am. J. Respir. Crit. Care. Med. 2014, 189, 394–400.

[61]

Stenmark, K. R.; Hu, C. J.; Pullamsetti, S. S. How many FOXs are there on the road to pulmonary hypertension? Am. J. Respir. Crit. Care. Med. 2018, 198, 704–707.

[62]

Savai, R.; Al-Tamari, H. M.; Sedding, D.; Kojonazarov, B.; Muecke, C.; Teske, R.; Capecchi, M. R.; Weissmann, N.; Grimminger, F.; Seeger, W. et al. Pro-proliferative and inflammatory signaling converge on FoxO1 transcription factor in pulmonary hypertension. Nat. Med. 2014, 20, 1289–1300.

[63]

Pradhan, A.; Dunn, A.; Ustiyan, V.; Bolte, C.; Wang, G. L.; Whitsett, J. A.; Zhang, Y. F.; Porollo, A.; Hu, Y. C.; Xiao, R. et al. The S52F FOXF1 mutation inhibits STAT3 signaling and causes alveolar capillary dysplasia. Am. J. Respir. Crit. Care. Med. 2019, 200, 1045–1056.

[64]

Sun, F.; Wang, G. L.; Pradhan, A.; Xu, K.; Gomez-Arroyo, J.; Zhang, Y. F.; Kalin, G. T.; Deng, Z. C.; Vagnozzi, R. J.; He, H. et al. Nanoparticle delivery of STAT3 alleviates pulmonary hypertension in a mouse model of alveolar capillary dysplasia. Circulation 2021, 144, 539–555.

[65]

Lu, T. X.; Rothenberg, M. E. MicroRNA. J. Allergy Clin. Immunol. 2018, 141, 1202–1207.

[66]

Carregal-Romero, S.; Fadón, L.; Berra, E.; Ruíz-Cabello, J. MicroRNA nanotherapeutics for lung targeting. Insights into pulmonary hypertension. Int. J. Mol. Sci. 2020, 21, 3253.

[67]

Ma, W. R.; Qiu, Z. H.; Bai, Z. Y.; Dai, Y.; Li, C.; Chen, X.; Song, X. X.; Shi, D. Y.; Zhou, Y. Z.; Pan, Y. J. et al. Inhibition of microRNA-30a alleviates vascular remodeling in pulmonary arterial hypertension. Mol. Ther. Nucl. Acids 2021, 26, 678–693.

[68]

Hall, I. F.; Climent, M.; Quintavalle, M.; Farina, F. M.; Schorn, T.; Zani, S.; Carullo, P.; Kunderfranco, P.; Civilini, E.; Condorelli, G. et al. Circ_Lrp6, a circular RNA enriched in vascular smooth muscle cells, acts as a sponge regulating miRNA-145 function. Circ. Res. 2019, 124, 498–510.

[69]

Chen Z.; Zeng H. Z.; Guo Y.; Liu P.; Pan H.; Deng A. M.; Hu J. miRNA-145 inhibits non-small cell lung cancer cell proliferation by targeting c-Myc. J Exp Clin Cancer Res. 2010, 29, 151.

[70]

Duygu, B.; Juni, R.; Ottaviani, L.; Bitsch, N.; Wit, J. B. M.; de Windt, L. J.; da Costa Martins, P. A. Comparison of different chemically modified inhibitors of miR-199b in vivo. Biochem. Pharmacol. 2019, 159, 106–115.

[71]

Gebert, M.; Jaśkiewicz, M.; Moszyńska, A.; Collawn, J. F.; Bartoszewski, R. The effects of single nucleotide polymorphisms in cancer RNAi therapies. Cancers 2020, 12, 3119.

[72]

McLendon, J. M.; Joshi, S. R.; Sparks, J.; Matar, M.; Fewell, J. G.; Abe, K.; Oka, M.; McMurtry, I. F.; Gerthoffer, W. T. Lipid nanoparticle delivery of a microRNA-145 inhibitor improves experimental pulmonary hypertension. J. Control. Release 2015, 210, 67–75.

[73]

Sindi, H. A.; Russomanno, G.; Satta, S.; V. B. Abdul-Salam, Jo, K. B.; B. Qazi-Chaudhry, Ainscough, A. J.; Szulcek, R.; Bogaard, H. J.; Morgan, C. C.; Pullamsetti, S. S.; Alzaydi, M. M. et al. Therapeutic potential of KLF2-induced exosomal microRNAs in pulmonary hypertension. Nat. Commun. 2020, 11, 1185.

[74]

Abdul-Salam, V. B.; Russomanno, G.; Chien-Nien, C.; Mahomed, A. S.; Yates, L. A.; Wilkins, M. R.; Zhao, L.; Gierula, M.; Dubois, O.; Schaeper, U. et al. CLIC4/Arf6 pathway a new lead in BMPRII inhibition in pulmonary hypertension. Circ. Res. 2019, 124, 52–65.

[75]

Sun, C. K.; Zhen, Y. Y.; Lu, H. I.; Sung, P. H.; Chang, L. T.; Tsai, T. H.; Sheu, J. J.; Chen, Y. L.; Chua, S.; Chang, H. W. et al. Reducing TRPC1 expression through liposome-mediated siRNA delivery markedly attenuates hypoxia-induced pulmonary arterial hypertension in a murine model. Stem Cells Int. 2014, 2014, 316214.

[76]

Du, J.; Xu, Z.; Liu, Q.; Yang, Y.; Qian, H.; Hu, M. D.; Fan, Y.; Li, Q.; Yao, W.; Li, H. L. et al. ATG101 single-stranded antisense RNA-loaded triangular DNA nanoparticles control human pulmonary endothelial growth via regulation of cell macroautophagy. ACS Appl. Mater. Interfaces 2017, 9, 42544–42555.

[77]

You, Z. C.; Qian, H.; Wang, C. Z.; He, B. F.; Yan, J. W.; Mao, C. D.; Wang, G. S. Regulation of vascular smooth muscle cell autophagy by DNA nanotube-conjugated mTOR siRNA. Biomaterials 2015, 67, 137–150.

[78]

Yu, Q. J.; Tai, Y. Y.; Tang, Y.; Zhao, J. S.; Negi, V.; Gulley, M. K.; Pilli, J.; Sun, W.; Brugger, K.; Mayr, J. et al. BOLA (BolA family member 3) deficiency controls endothelial metabolism and glycine homeostasis in pulmonary hypertension. Circulation 2019, 139, 2238–2255.

[79]

Dahlman, J. E.; Barnes, C.; Khan, O. F.; Thiriot, A.; Jhunjunwala, S.; Shaw, T. E.; Xing, Y. P.; Sager, H. B.; Sahay, G.; Speciner, L. et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat. Nanotechnol. 2014, 9, 648–655.

[80]

Wang, L. L.; Chang, C. C.; Sylvers, J.; Yuan, F. A statistical framework for determination of minimal plasmid copy number required for transgene expression in mammalian cells. Bioelectrochemistry 2021, 138, 107731.

[81]

Teng, C.; Li, B. B.; Lin, C. S.; Xing, X. Y.; Huang, F. F.; Yang, Y.; Li, Y.; Azevedo, H. S.; He, W. Targeted delivery of baicalein-p53 complex to smooth muscle cells reverses pulmonary hypertension. J. Control. Release 2022, 341, 591–604.

[82]

Fan, Y.; Gu, X.; Zhang, J.; Sinn, K.; Klepetko, W.; Wu, N.; Foris, V.; Solymosi, P.; Kwapiszewska, G.; Kuebler, W. M. TWIST1 drives smooth muscle cell proliferation in pulmonary hypertension via loss of GATA-6 and BMPR2. Am. J. Respir. Crit. Care. Med. 2020, 202, 1283–1296.

[83]

Mei, L.; Zheng, Y. M.; Song, T. Y.; Yadav, V. R.; Joseph, L. C.; Truong, L.; Kandhi, S.; Barroso, M. M.; Takeshima, H.; Judson, M. A. et al. Rieske iron-sulfur protein induces FKBP12.6/RyR2 complex remodeling and subsequent pulmonary hypertension through NF-κB/cyclin D1 pathway. Nat. Commun. 2020, 11, 3527.

[84]

Kimura, S.; Egashira, K.; Chen, L.; Nakano, K.; Iwata, E.; Miyagawa, M.; Tsujimoto, H.; Hara, K.; Morishita, R.; Sueishi, K. et al. Nanoparticle-mediated delivery of nuclear factor κB decoy into lungs ameliorates monocrotaline-induced pulmonary arterial hypertension. Hypertension 2009, 53, 877–883.

[85]

de Lázaro, I.; Mooney, D. J. Obstacles and opportunities in a forward vision for cancer nanomedicine. Nat. Mater. 2021, 20, 1469–1479.

[86]

Salvati, A.; Pitek, A. S.; Monopoli, M. P.; Prapainop, K.; Bombelli, F. B.; Hristov, D. R.; Kelly, P. M.; Åberg, C.; Mahon, E.; Dawson, K. A. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 2013, 8, 137–143.

[87]

Ryu, J. H.; Yoon, H. Y.; Sun, I. C.; Kwon, I. C.; Kim, K. Tumor-targeting glycol chitosan nanoparticles for cancer heterogeneity. Adv. Mater. 2020, 32, 2002197.

[88]

Safinya, C. R.; Ewert, K. K. Liposomes derived from molecular vases. Nature 2012, 489, 372–374.

[89]

Li, C. X.; Zhang, Y. F.; Li, Z. M.; Mei, E. C.; Lin, J.; Li, F.; Chen, C. G.; Qing, X.; Hou, L. Y.; Xiong, L. et al. Light-responsive biodegradable nanorattles for cancer theranostics. Adv. Mater. 2018, 30, 1706150.

[90]

Taiariol, L.; Chaix, C.; Farre, C.; Moreau, E. Click and bioorthogonal chemistry: The future of active targeting of nanoparticles for nanomedicines? Chem. Rev. 2022, 122, 340–384.

[91]

Zhu, G. H.; Gray, A.; B. C.; Patra, H. K. Nanomedicine: Controlling nanoparticle clearance for translational success. Trends Pharmacol. Sci. 2022, 43, 709–711.

[92]

Zhang, N. N.; Shen, X. X.; Liu, K.; Nie, Z. H.; Kumacheva, E. Polymer-tethered nanoparticles: From surface engineering to directional self-assembly. Acc. Chem. Res. 2022, 55, 1503–1513.

[93]

Cabral, H.; Miyata, K.; Osada, K.; Kataoka, K. Block copolymer micelles in nanomedicine applications. Chem. Rev. 2018, 118, 6844–6892.

[94]

DelRe, C.; Chang, B.; Jayapurna, I.; Hall, A.; Wang, A.; Zolkin, K.; Xu, T. Synergistic enzyme mixtures to realize near-complete depolymerization in biodegradable polymer/additive blends. Adv. Mater. 2021, 33, 2105707.

[95]

Gigmes, D.; Trimaille, T. Advances in amphiphilic polylactide/vinyl polymer based nano-assemblies for drug delivery. Adv. Colloid Interface Sci. 2021, 294, 102483.

[96]

Zhang, Z.; Qiu, N. S.; Wu, S. L.; Liu, X.; Zhou, Z. X.; Tang, J. B.; Liu, Y. P.; Zhou, R. H.; Shen, Y. Q. Dose-independent transfection of hydrophobized polyplexes. Adv. Mater. 2021, 33, 2102219.

[97]

Ozer, I.; Pitoc, G. A.; Layzer, J. M.; Moreno, A.; Olson, L. B.; Layzer, K. D.; Hucknall, A. M.; Sullenger, B. A.; Chilkoti, A. PEG-like brush polymer conjugate of RNA aptamer that shows reversible anticoagulant activity and minimal immune response. Adv. Mater. 2022, 34, 2107852.

[98]

Zhu, S. S.; Xing, H.; Gordiichuk, P.; Park, J.; Mirkin, C. A. PLGA spherical nucleic acids. Adv. Mater. 2018, 30, 1707113.

[99]

Hwang, D.; Ramsey, J. D.; Kabanov, A. V. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval. Adv. Drug Deliv. Rev. 2020, 156, 80–118.

[100]

Brilmayer, R.; Förster, C.; Zhao, L.; Andrieu-Brunsen, A. Recent trends in nanopore polymer functionalization. Curr. Opin. Biotechnol. 2020, 63, 200–209.

[101]

Liu, X. Y.; Sun, J. W.; Gao, W. P. Site-selective protein modification with polymers for advanced biomedical applications. Biomaterials 2018, 178, 413–434.

[102]

Arumughan, V.; Nypelö, T.; Hasani, M.; Larsson, A. Fundamental aspects of the non-covalent modification of cellulose via polymer adsorption. Adv. Colloid Interface Sci. 2021, 298, 102529.

[103]

Ishihara, T.; Hayashi, E.; Yamamoto, S.; Kobayashi, C.; Tamura, Y.; Sawazaki, R.; Tamura, F.; Tahara, K.; Kasahara, T.; Ishihara, T. et al. Encapsulation of beraprost sodium in nanoparticles: Analysis of sustained release properties, targeting abilities and pharmacological activities in animal models of pulmonary arterial hypertension. J. Control. Release 2015, 197, 97–104.

[104]

Varshosaz, J.; Taymouri, S.; Hamishehkar, H.; Vatankhah, R.; Yaghubi, S. Development of dry powder inhaler containing tadalafil-loaded PLGA nanoparticles. Res. Pharm. Sci. 2017, 12, 222–232.

[105]

Giménez, V. M.; Sperandeo, N.; Faudone, S.; Noriega, S.; Manucha, W.; Kassuha, D. Preparation and characterization of bosentan monohydrate/ε-polycaprolactone nanoparticles obtained by electrospraying. Biotechnol. Prog. 2019, 35, e2748.

[106]

Hanna, L. A.; Basalious, E. B.; ELGazayerly, O. N. Respirable controlled release polymeric colloid (RCRPC) of bosentan for the management of pulmonary hypertension: In vitro aerosolization, histological examination and in vivo pulmonary absorption. Drug Deliv. 2017, 24, 188–198.

[107]

Ichimura, K.; Matoba, T.; Koga, J. I.; Nakano, K.; Funamoto, D.; Tsutsui, H.; Egashira, K. Nanoparticle-mediated targeting of pitavastatin to small pulmonary arteries and leukocytes by intravenous administration attenuates the progression of monocrotaline-induced established pulmonary arterial hypertension in rats. Int. Heart J. 2018, 59, 1432–1444.

[108]

Akagi, S.; Nakamura, K.; Miura, D.; Saito, Y.; Matsubara, H.; Ogawa, A.; Matoba, T.; Egashira, K.; Ito, H. Delivery of imatinib-incorporated nanoparticles into lungs suppresses the development of monocrotaline-induced pulmonary arterial hypertension. Int. Heart J. 2015, 56, 354–359.

[109]

Rashid, J.; Alobaida, A.; Al-Hilal, T. A.; Hammouda, S.; McMurtry, I. F.; Nozik-Grayck, E.; Stenmark, K. R.; Ahsan, F. Repurposing rosiglitazone, a PPAR-γ agonist and oral antidiabetic, as an inhaled formulation, for the treatment of PAH. J. Control. Release 2018, 280, 113–123.

[110]

Ni, R.; Muenster, U.; Zhao, J.; Zhang, L.; Becker-Pelster, E. M.; Rosenbruch, M.; Mao, S. R. Exploring polyvinylpyrrolidone in the engineering of large porous PLGA microparticles via single emulsion method with tunable sustained release in the lung: In vitro and in vivo characterization. J. Control. Release 2017, 249, 11–22.

[111]

Lv, B. Y.; Chen, S.; Tang, C. S.; Jin, H. F.; Du, J. B.; Huang, Y. Q. Hydrogen sulfide and vascular regulation—An update. J. Adv. Res. 2021, 27, 85–97.

[112]

Roubenne, L.; Marthan, R.; Le Grand, B.; Guibert, C. Hydrogen sulfide metabolism and pulmonary hypertension. Cells 2021, 10, 1477.

[113]

Zhang, H.; Lin, Y. J.; Ma, Y. W.; Zhang, J. F.; Wang, C. Q.; Zhang, H. L. Protective effect of hydrogen sulfide on monocrotaline-induced pulmonary arterial hypertension via inhibition of the endothelial mesenchymal transition. Int. J. Mol. Med. 2019, 44, 2091–2102.

[114]

Zhang, H. L.; Guo, C. F.; Zhang, A. L.; Fan, Y. Q.; Gu, T.; Wu, D. J.; Sparatore, A.; Wang, C. Q. Effect of S-aspirin, a novel hydrogen-sulfide-releasing aspirin (ACS14), on atherosclerosis in apoE-deficient mice. Eur. J. Pharmacol. 2012, 697, 106–116.

[115]

Zhang, H.; Hao, L. Z.; Pan, J. A.; Gao, Q.; Zhang, J. F.; Kankala, R. K.; Wang, S. B.; Chen, A. Z.; Zhang, H. L. Microfluidic fabrication of inhalable large porous microspheres loaded with H2S-releasing aspirin derivative for pulmonary arterial hypertension therapy. J. Control. Release 2021, 329, 286–298.

[116]

Large, D. E.; Abdelmessih, R. G.; Fink, E. A.; Auguste, D. T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv. Drug Deliv. Rev. 2021, 176, 113851.

[117]

Shah, S.; Dhawan, V.; Holm, R.; Nagarsenker, M. S.; Perrie, Y. Liposomes: Advancements and innovation in the manufacturing process. Adv. Drug Deliv. Rev. 2020, 154–155, 102–122.

[118]

Bayat, F.; Hosseinpour-Moghadam, R.; Mehryab, F.; Fatahi, Y.; Shakeri, N.; Dinarvand, R.; Ten Hagen, T. L. M.; Haeri, A. Potential application of liposomal nanodevices for non-cancer diseases: An update on design, characterization and biopharmaceutical evaluation. Adv. Colloid Interface Sci. 2020, 277, 102121.

[119]

Moosavian, S. A.; Bianconi, V.; Pirro, M.; Sahebkar, A. Challenges and pitfalls in the development of liposomal delivery systems for cancer therapy. Semin. Cancer Biol. 2021, 69, 337–348.

[120]

Lai, W. F.; Wong, W. T.; Rogach, A. L. Molecular design of layer-by-layer functionalized liposomes for oral drug delivery. ACS Appl. Mater. Interfaces 2020, 12, 43341–43351.

[121]

Münter, R.; Bak, M.; Christensen, E.; Kempen, P. J.; Larsen, J. B.; Kristensen, K.; Parhamifar, L.; Andresen, T. L. Mechanisms of selective monocyte targeting by liposomes functionalized with a cationic, arginine-rich lipopeptide. Acta Biomater. 2022, 144, 96–108.

[122]

Zhu, Y.; Liang, J. M.; Gao, C. F.; Wang, A. N.; Xia, J. X.; Hong, C.; Zhong, Z. R.; Zuo, Z.; Kim, J.; Ren, H. et al. Multifunctional ginsenoside Rg3-based liposomes for glioma targeting therapy. J. Control. Release 2021, 330, 641–657.

[123]

Jain, P. P.; Leber, R.; Nagaraj, C.; Leitinger, G.; Lehofer, B.; Olschewski, H.; Olschewski, A.; Prassl, R.; Marsh, L. M. Liposomal nanoparticles encapsulating iloprost exhibit enhanced vasodilation in pulmonary arteries. Int. J. Nanomed. 2014, 9, 3249–3261.

[124]

Liu, A. J.; Li, B.; Yang, M.; Shi, Y. Y.; Su, J. W. Targeted treprostinil delivery inhibits pulmonary arterial remodeling. Eur. J. Pharmacol. 2022, 923, 174700.

[125]

Li, B. B.; He, W.; Ye, L.; Zhu, Y. L.; Tian, Y. L.; Chen, L.; Yang, J.; Miao, M. X.; Shi, Y. J.; Azevedo, H. S. et al. Targeted delivery of sildenafil for inhibiting pulmonary vascular remodeling. Hypertension 2019, 73, 703–711.

[126]

Nahar, K.; Rashid, J.; Absar, S.; Al-Saikhan, F. I.; Ahsan, F. Liposomal aerosols of nitric oxide (NO) donor as a long-acting substitute for the ultra-short-acting inhaled NO in the treatment of PAH. Pharm. Res. 2016, 33, 1696–1710.

[127]

Elnaggar, M. A.; Subbiah, R.; Han, D. K.; Joung, Y. K. Lipid-based carriers for controlled delivery of nitric oxide. Expert Opin. Drug Deliv. 2017, 14, 1341–1353.

[128]

Gupta, N.; Al-Saikhan, F. I.; Patel, B.; Rashid, J.; Ahsan, F. Fasudil and SOD packaged in peptide-studded-liposomes: Properties, pharmacokinetics and ex-vivo targeting to isolated perfused rat lungs. Int. J. Pharm. 2015, 488, 33–43.

[129]

Rashid, J.; Nahar, K.; Raut, S.; Keshavarz, A.; Ahsan, F. Fasudil and DETA NONOate, loaded in a peptide-modified liposomal carrier, slow PAH progression upon pulmonary delivery. Mol. Pharm. 2018, 15, 1755–1765.

[130]

Gupta, N.; Rashid, J.; Nozik-Grayck, E.; McMurtry, I. F.; Stenmark, K. R.; Ahsan, F. Cocktail of superoxide dismutase and fasudil encapsulated in targeted liposomes slows PAH progression at a reduced dosing frequency. Mol. Pharm. 2017, 14, 830–841.

[131]

Nahar, K.; Absar, S.; Gupta, N.; Kotamraju, V. R.; McMurtry, I. F.; Oka, M.; Komatsu, M.; Nozik-Grayck, E.; Ahsan, F. Peptide-coated liposomal fasudil enhances site specific vasodilation in pulmonary arterial hypertension. Mol. Pharm. 2014, 11, 4374–4384.

[132]

Gupta, N.; Ibrahim, H. M.; Ahsan, F. Peptide-micelle hybrids containing fasudil for targeted delivery to the pulmonary arteries and arterioles to treat pulmonary arterial hypertension. J. Pharm. Sci. 2014, 103, 3743–3753.

[133]

Gupta, V.; Gupta, N.; Shaik, I. H.; Mehvar, R.; McMurtry, I. F.; Oka, M.; Nozik-Grayck, E.; Komatsu, M.; Ahsan, F. Liposomal fasudil, a Rho-kinase inhibitor, for prolonged pulmonary preferential vasodilation in pulmonary arterial hypertension. J. Control. Release 2013, 167, 189–199.

[134]

Xu, H. F.; Ji, H. Y.; Li, Z. R.; Qiao, W. M.; Wang, C. H.; Tang, J. L. In vivo pharmacokinetics and in vitro release of imatinib mesylate-loaded liposomes for pulmonary delivery. Int. J. Nanomed. 2021, 16, 1221–1229.

[135]

Lee, Y.; Pai, S. B.; Bellamkonda, R. V.; Thompson, D. H.; Singh, J. Cerivastatin nanoliposome as a potential disease modifying approach for the treatment of pulmonary arterial hypertension. J. Pharmacol. Exp. Ther. 2018, 366, 66–74.

[136]

Yin, Y. J.; Wu, X. D.; Yang, Z. Y.; Zhao, J.; Wang, X. S.; Zhang, Q. Y.; Yuan, M. Q.; Xie, L.; Liu, H. M.; He, Q. The potential efficacy of R8-modified paclitaxel-loaded liposomes on pulmonary arterial hypertension. Pharm. Res. 2013, 30, 2050–2062.

[137]

Dhoble, S.; Patravale, V. SIRT 1 activator loaded inhaled antiangiogenic liposomal formulation development for pulmonary hypertension. AAPS PharmSciTech 2022, 23, 158.

[138]

Li, Z. R.; Qiao, W. M.; Wang, C. H.; Wang, H. Q.; Ma, M. C.; Han, X. Y.; Tang, J. L. DPPC-coated lipid nanoparticles as an inhalable carrier for accumulation of resveratrol in the pulmonary vasculature, a new strategy for pulmonary arterial hypertension treatment. Drug Deliv. 2020, 27, 736–744.

[139]

Huang, Y. Q.; Chen, T.; Wang, W. M.; Zhuang, B.; Yuan, T. Y.; Liu, Y.; Du, L. N.; Wei, X. Y.; Peng, H.; Jin, Y. G. Preparation of liposomal sildenafil and its pulmonary delivery for the prevention of high altitude pulmonary edema. Acta Pharm. Sin. 2021, 56, 2658–2668.

[140]

Urakami, T.; Järvinen, T. A. H.; Toba, M.; Sawada, J.; Ambalavanan, N.; Mann, D.; McMurtry, I.; Oka, M.; Ruoslahti, E.; Komatsu, M. Peptide-directed highly selective targeting of pulmonary arterial hypertension. Am. J. Pathol. 2011, 178, 2489–2495.

[141]

Nahar, K.; Absar, S.; Patel, B.; Ahsan, F. Starch-coated magnetic liposomes as an inhalable carrier for accumulation of fasudil in the pulmonary vasculature. Int. J. Pharm. 2014, 464, 185–195.

[142]

Marulanda, K.; Mercel, A.; Gillis, D. C.; Sun, K.; Gambarian, M.; Roark, J.; Weiss, J.; Tsihlis, N. D.; Karver, M. R.; Centeno, S. R. et al. Intravenous delivery of lung-targeted nanofibers for pulmonary hypertension in mice. Adv. Healthc. Mater. 2021, 10, 2100302.

[143]

Lautner, G.; Lautner-Csorba, O.; Stringer, B.; Meyerhoff, M. E.; Schwendeman, S. P. Feedback-controlled photolytic gas phase nitric oxide delivery from S-nitrosothiol-doped silicone rubber films. J. Control. Release 2020, 318, 264–269.

[144]

Li, Q.; Youn, J. Y.; Siu, K. L.; Murugesan, P.; Zhang, Y. X.; Cai, H. Knockout of dihydrofolate reductase in mice induces hypertension and abdominal aortic aneurysm via mitochondrial dysfunction. Redox Biol. 2019, 24, 101185.

[145]

Zhu, M. L.; Gao, Z. T.; Lu, J. X.; Wang, Y.; Wang, G.; Zhu, T. T.; Li, P.; Liu, C.; Wang, S. X.; Yang, L. Amorphous nano-selenium quantum dots prevent pulmonary arterial hypertension through recoupling endothelial nitric oxide synthase. Aging 2021, 13, 3368–3385.

[146]

Kolli, M. B.; Manne, N. D. P. K.; Para, R.; Nalabotu, S. K.; Nandyala, G.; Shokuhfar, T.; He, K.; Hamlekhan, A.; Ma, J. Y.; Wehner, P. S. et al. Cerium oxide nanoparticles attenuate monocrotaline induced right ventricular hypertrophy following pulmonary arterial hypertension. Biomaterials 2014, 35, 9951–9962.

[147]

Boucherat, O.; Agrawal, V.; Lawrie, A.; Bonnet, S. The latest in animal models of pulmonary hypertension and right ventricular failure. Circ. Res. 2022, 130, 1466–1486.

[148]

Metselaar, J. M.; Lammers, T. Challenges in nanomedicine clinical translation. Drug Deliv. Transl. Res. 2020, 10, 721–725.

[149]

Liu, X. S.; Tang, I.; Wainberg, Z. A.; Meng, H. Safety considerations of cancer nanomedicine—A key step toward translation. Small 2020, 16, 2000673.

[150]

Germain, M.; Caputo, F.; Metcalfe, S.; Tosi, G.; Spring, K.; Åslund, A. K. O.; Pottier, A.; Schiffelers, R.; Ceccaldi, A.; Schmid, R. Delivering the power of nanomedicine to patients today. J. Control. Release 2020, 326, 164–171.

[151]

Huang, J.; Huang, Q.; Liu, M.; Chen, Q. H.; Ai, K. L. Emerging bismuth chalcogenides based nanodrugs for cancer radiotherapy. Front. Pharmacol. 2022, 13, 844037.

[152]

Wang, J. L.; Sui, L.; Huang, J.; Miao, L.; Nie, Y. B.; Wang, K. S.; Yang, Z. C.; Huang, Q.; Gong, X.; Nan, Y. Y. et al. MoS2-based nanocomposites for cancer diagnosis and therapy. Bioact. Mater. 2021, 6, 4209–4242.

[153]

Yang, Y. Q.; Zhao, T. J.; Chen, Q. H.; Li, Y. M.; Xiao, Z. X.; Xiang, Y. T.; Wang, B. Y.; Qiu, Y. G.; Tu, S. Q.; Jiang, Y. T. et al. Nanomedicine strategies for heating “cold” ovarian cancer (OC): Next evolution in immunotherapy of OC. Adv. Sci. 2022, 9, 2202797.

[154]

Huang, Q.; Yang, Y. Q.; Zhao, T. J.; Chen, Q. H.; Liu, M.; Ji, S. T.; Zhu, Y.; Yang, Y. R.; Zhang, J. P.; Zhao, H. X. et al. Passively-targeted mitochondrial tungsten-based nanodots for efficient acute kidney injury treatment. Bioact. Mater. 2023, 21, 381–393.

[155]

Chen, Q. H.; Nan, Y. Y.; Yang, Y. Q.; Xiao, Z. X.; Liu, M.; Huang, J.; Xiang, Y. T.; Long, X. Y.; Zhao, T. J.; Wang, X. Y. et al. Nanodrugs alleviate acute kidney injury: Manipulate RONS at kidney. Bioact. Mater. 2023, 22, 141–167.

[156]

Liu, M.; Xiang, Y. T.; Yang, Y. Q.; Long, X. Y.; Xiao, Z. X.; Nan, Y. Y.; Jiang, Y. T.; Qiu, Y. G.; Huang, Q.; Ai, K. L. State-of-the-art advancements in liver-on-a-chip (LOC): Integrated biosensors for LOC. Biosens. Bioelectron. 2022, 218, 114758.

[157]

Zhu, Y.; Zhao, T. J.; Liu, M.; Wang, S. Y.; Liu, S. L.; Yang, Y. R.; Yang, Y. Q.; Nan, Y. Y.; Huang, Q.; Ai, K. L. Rheumatoid arthritis microenvironment insights into treatment effect of nanomaterials. Nano Today 2022, 42, 101358.

[158]

Wan, X. Y.; Zhao, Y. C.; Li, Z.; Li, L. L. Emerging polymeric electrospun fibers: From structural diversity to application in flexible bioelectronics and tissue engineering. Exploration 2022, 2, 20210029.

[159]

Dai, Y. J.; Ding, Y. M.; Li, L. L. Nanozymes for regulation of reactive oxygen species and disease therapy. Chin. Chem. Lett. 2021, 32, 2715–2728.

[160]

Liu, Z. R.; Wan, X. Y.; Wang, Z. L.; Li, L. L. Electroactive biomaterials and systems for cell fate determination and tissue regeneration: Design and applications. Adv. Mater. 2021, 33, 2007429.

[161]
Wang, X. Y.; Wang, S. B.; Gao, J.; Yao, S. C.; Xu, T.; Zhao, Y. C.; Zhang, Z. Y.; Huang, T.; Yan, S.; Li, L. L. Metformin capped Cu2(OH)3Cl nanosheets for chemodynamic wound disinfection. Nano Res., in press, https://doi.org/10.1007/s12274-022-4457-5.
[162]

Zhao, Y. C.; Wang, S. B.; Ding, Y. M.; Zhang, Z. Y.; Huang, T.; Zhang, Y. L.; Wan, X. Y.; Wang, Z. L.; Li, L. L. Piezotronic effect-augmented Cu2−x-O-BaTiO3 sonosensitizers for multifunctional cancer dynamic therapy. ACS Nano 2022, 16, 9304–9316.

[163]

Yao, S. C.; Wang, Z.; Li, L. L. Application of organic frame materials in cancer therapy through regulation of tumor microenvironment. Smart Mater. Med. 2022, 3, 230–242.

[164]

Yao, S. C.; Liu, Z. R.; Li, L. L. Recent progress in nanoscale covalent organic frameworks for cancer diagnosis and therapy. Nano-Micro. Lett. 2021, 13, 176.

[165]

Ang, M. J. Y.; Chan, S. Y.; Goh, Y. Y.; Luo, Z. C.; Lau, J. W.; Liu, X. G. Emerging strategies in developing multifunctional nanomaterials for cancer nanotheranostics. Adv. Drug Deliv. Rev. 2021, 178, 113907.

[166]

Lepeltier, E.; Rijo, P.; Rizzolio, F.; Popovtzer, R.; Petrikaite, V.; Assaraf, Y. G.; Passirani, C. Nanomedicine to target multidrug resistant tumors. Drug Resist. Updat. 2020, 52, 100704.

[167]

Su, Z. W.; Dong, S. W.; Zhao, S. C.; Liu, K. S.; Tan, Y.; Jiang, X. Y.; Assaraf, Y. G.; Qin, B.; Chen, Z. S.; Zou, C. Novel nanomedicines to overcome cancer multidrug resistance. Drug Resist. Updat. 2021, 58, 100777.

Nano Research
Pages 7007-7029
Cite this article:
Wang S, Chen Q, Zhao T, et al. Nanomedicine-based treatment: An emerging therapeutical strategy for pulmonary hypertension. Nano Research, 2023, 16(5): 7007-7029. https://doi.org/10.1007/s12274-022-5310-6
Topics:

6497

Views

4

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 29 September 2022
Revised: 31 October 2022
Accepted: 07 November 2022
Published: 15 February 2023
© Tsinghua University Press 2022
Return