Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Colorimetry often suffers from deficiency in quantitative determination, susceptibility to ambient illuminance, and low sensitivity and visual resolution to tiny color changes. To offset these deficiencies, we incorporate deep machine learning into colorimetry by introducing a convolutional neural network (CNN) with powerful parallel processing, self-organization, and self-learning capabilities. As a proof of concept, a plasmonic nanosensor is proposed for the colorimetric detection of glucose by coupling Benedict’s reagent with gold nanoparticles (AuNPs), which relies on the assemble of AuNPs into dendritic nanochains by Cu2O. The distinct difference of refractive index between Cu2O and Au and the localized surface plasmon resonance coupling effect among AuNPs leads to a broad spectral shift as well as abundant color changes, thereby providing sufficient data for self-learning enabled by machine learning. The CNN is then used to fully diversify the learning and training of the images from standard samples under different ambient conditions and to obtain a classifier that can not only recognize tiny color changes that are imperceptible to human eyes, but also exhibit high accuracy and excellent anti-environmental interference capability. This classifier is then compiled as an application (APP) and implanted into a smartphone with Android environment. 306 clinical urine samples were detected using the proposed method and the results showed a satisfactory correlation (87.6%) with that of a standard blood glucose test method. More importantly, this method can be generalized to other applications in colorimetry, and more broadly, in other scientific domains that involve image analysis and quantification.
Unser, S.; Campbell, I.; Jana, D.; Sagle, L. Direct glucose sensing in the physiological range through plasmonic nanoparticle formation. Analyst 2015, 140, 590–599.
Chen, S.; Hai, X.; Chen, X. W.; Wang, J. H. In situ growth of silver nanoparticles on graphene quantum dots for ultrasensitive colorimetric detection of H2O2 and glucose. Anal. Chem. 2014, 86, 6689–6694.
Huang, Z. M.; Yang, J.; Zhang, L.; Geng, X.; Ge, J.; Hu, Y. L.; Li, Z. H. A novel one-step colorimetric assay for highly sensitive detection of glucose in serum based on MnO2 nanosheets. Anal. Methods 2017, 9, 4275–4281.
Li, C. H.; Hu, J. M.; Liu, T.; Liu, S. Y. Stimuli-triggered off/on switchable complexation between a novel type of charge-generation polymer (CGP) and gold nanoparticles for the sensitive colorimetric detection of hydrogen peroxide and glucose. Macromolecules 2011, 44, 429–431.
Radhakumary, C.; Sreenivasan, K. Naked eye detection of glucose in urine using glucose oxidase immobilized gold nanoparticles. Anal. Chem. 2011, 83, 2829–2833.
Shen, W.; Deng, H. M.; Gao, Z. Q. Gold nanoparticle-enabled real-time ligation chain reaction for ultrasensitive detection of DNA. J. Am. Chem. Soc. 2012, 134, 14678–14681.
Qiang, H.; Wei, X. C.; Liu, Q. Y.; Chen, Z. B. Iodide-responsive Cu-Au nanoparticle-based colorimetric sensor array for protein discrimination. ACS Sustain. Chem. Eng. 2018, 6, 15720–15726.
Teng, Y.; Shi, J.; Pong, P. W. T. Sensitive and specific colorimetric detection of cancer cells based on folate-conjugated gold-iron-oxide composite nanoparticles. ACS Appl. Nano Mater. 2019, 2, 7421–7431.
Li, J. W.; Wang, Y.; Zhang, Q. H.; Huo, D. Q.; Hou, C. J.; Zhou, J.; Luo, H. B.; Yang, M. New application of old methods: Development of colorimetric sensor array based on Tollen’s reagent for the discrimination of aldehydes based on Tollen’s reagent. Anal. Chim. Acta 2020, 1096, 138–147.
Lin, F. H.; Doong, R. A. Bifunctional Au-Fe3O4 heterostructures for magnetically recyclable catalysis of nitrophenol reduction. J. Phys. Chem. C 2011, 115, 6591–6598.
Dong, C.; Wang, Z. Q.; Zhang, Y. J.; Ma, X. H.; Iqbal, M. Z.; Miao, L. J.; Zhou, Z. W.; Shen, Z. Y.; Wu, A. G. High-performance colorimetric detection of thiosulfate by using silver nanoparticles for smartphone-based analysis. ACS Sens. 2017, 2, 1152–1159.
Zeng, J. B.; Zhang, Y.; Zeng, T.; Aleisa, R.; Qiu, Z. W.; Chen, Y. Z.; Huang, J. K.; Wang, D. W.; Yan, Z. F.; Yin, Y. D. Anisotropic plasmonic nanostructures for colorimetric sensing. Nano Today 2020, 32, 100855.
Wang, H. Q.; Yang, L.; Chu, S. Y.; Liu, B. H.; Zhang, Q. K.; Zou, L. M.; Yu, S. M.; Jiang, C. L. Semiquantitative visual detection of lead ions with a smartphone via a colorimetric paper-based analytical device. Anal. Chem. 2019, 91, 9292–9299.
Wang, X. H.; Chang, T. W.; Lin, G. H.; Gartia, M. R.; Liu, G. L. Self-referenced smartphone-based nanoplasmonic imaging platform for colorimetric biochemical sensing. Anal. Chem. 2017, 89, 611–615.
Xu, M.; Huang, W.; Lu, D. K.; Huang, C. Y.; Deng, J. J.; Zhou, T. S. Alizarin Red-Tb3+ complex as a ratiometric colorimetric and fluorescent dual probe for the smartphone-based detection of an anthrax biomarker. Anal. Methods 2019, 11, 4267–4273.
Liu, F.; Chen, R.; Song, W. L.; Li, L. W.; Lei, C. Y.; Nie, Z. Modular combination of proteolysis-responsive transcription and spherical nucleic acids for smartphone-based colorimetric detection of protease biomarkers. Anal. Chem. 2021, 93, 3517–3525.
Nelis, J. L. D.; Zhao, Y. F.; Bura, L.; Rafferty, K.; Elliott, C. T.; Campbell, K. A randomized combined channel approach for the quantification of color- and intensity-based assays with smartphones. Anal. Chem. 2020, 92, 7852–7860.
Gardner, W.; Hook, A. L.; Alexander, M. R.; Ballabio, D.; Cutts, S. M.; Muir, B. W.; Pigram, P. J. ToF-SIMS and machine learning for single-pixel molecular discrimination of an acrylate polymer microarray. Anal. Chem. 2020, 92, 6587–6597.
Yang, X.; Sun, M. T.; Wang, T.; Wong, M. W.; Huang, D. J. A smartphone-based portable analytical system for on-site quantification of hypochlorite and its scavenging capacity of antioxidants. Sens. Actuators B: Chem. 2019, 283, 524–531.
Bao, X.; Jiang, S.; Wang, Y.; Yu, M.; Han, J. A remote computing based point-of-care colorimetric detection system with a smartphone under complex ambient light conditions. Analyst 2018, 143, 1387–1395.
Kılıç, V.; Alankus, G.; Horzum, N.; Mutlu, A. Y.; Bayram, A.; Solmaz, M. E. Single-image-referenced colorimetric water quality detection using a smartphone. ACS Omega 2018, 3, 5531–5536.
Kim, H.; Awofeso, O.; Choi, S.; Jung, Y.; Bae, E. Colorimetric analysis of saliva-alcohol test strips by smartphone-based instruments using machine-learning algorithms. Appl. Opt. 2017, 56, 84–92.
Sajed, S.; Kolahdouz, M.; Sadeghi, M. A.; Razavi, S. F. High-performance estimation of lead ion concentration using smartphone-based colorimetric analysis and a machine learning approach. ACS Omega 2020, 5, 27675–27684.
Mutlu, A. Y.; Kılıç, V.; Özdemir, G. K.; Bayram, A.; Horzum, N.; Solmaz, M. E. Smartphone-based colorimetric detection via machine learning. Analyst 2017, 142, 2434–2441.
Solmaz, M. E.; Mutlu, A. Y.; Alankus, G.; Kılıç, V.; Bayram, A.; Horzum, N. Quantifying colorimetric tests using a smartphone app based on machine learning classifiers. Sens. Actuators B: Chem. 2018, 255, 1967–1973.
He, H.; Yan, S.; Lyu, D. Y.; Xu, M. X.; Ye, R. Q.; Zheng, P.; Lu, X. Y.; Wang, L.; Ren, B. Deep learning for biospectroscopy and biospectral imaging: State-of-the-art and perspectives. Anal. Chem. 2021, 93, 3653–3665.
Li, Z. L.; Chang, X. L.; Wang, Y.; Wei, C. T.; Wang, J.; Ai, K. L.; Zhang, Y.; Lu, L. H. Point-and-shoot strategy for identification of alcoholic beverages. Anal. Chem. 2018, 90, 9838–9844.
Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495.
Hubel, D. H.; Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 1962, 160, 106–154.
Liu, D. Y.; Ding, S. Y.; Lin, H. X.; Liu, B. J.; Ye, Z. Z.; Fan, F. R.; Ren, B.; Tian, Z. Q. Distinctive enhanced and tunable plasmon resonant absorption from controllable Au@Cu2O nanoparticles: Experimental and theoretical modeling. J. Phys. Chem. C 2012, 116, 4477–4483.
Sekhar, H.; Rao, D. N. Preparation, characterization and nonlinear absorption studies of cuprous oxide nanoclusters, micro-cubes and micro-particles. J. Nanopart. Res. 2012, 14, 976.
Zheng, G. W.; Wang, J. S.; Li, H. Y.; Li, Y. L.; Hu, P. WO3/Cu2O heterojunction for the efficient photoelectrochemical property without external bias. Appl. Catal. B: Environ. 2020, 265, 118561.
Morales, J.; Sánchez, L.; Martín, F.; Ramos-Barrado, J. R.; Sánchez, M. Use of low-temperature nanostructured CuO thin films deposited by spray-pyrolysis in lithium cells. Thin Solid Films 2005, 474, 133–140.
Behjati, S.; Sheibani, S.; Herritsch, J.; Gottfried, J. M. Photodegradation of dyes in batch and continuous reactors by Cu2O-CuO nano-photocatalyst on Cu foils prepared by chemical-thermal oxidation. Mater. Res. Bull. 2020, 130, 110920.