AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Gate-tunable high-performance broadband phototransistor array of two-dimensional PtSe2 on SOI

Yexin Chen1Qinghai Zhu1Xiaodong Zhu2Yijun Sun3Zhiyuan Cheng1Jing Xu4( )Mingsheng Xu1( )
School of Micro-Nano Electronics, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
Key Laboratory of Ocean Observation-Imaging Testbed of Zhejiang Province, Ocean College, Zhejiang University, Zhoushan 316021, China
Show Author Information

Graphical Abstract

We propose a gate-tunable, high-performance, self-driving, and wide detection range phototransistor based on a two-dimensional (2D) PtSe2 on silicon-on-insulator (SOI). The PtSe2/Si phototransistor exhibits a responsivity of 1.07 A/W and a specific detectivity of 6.60 × 109 Jones under 808 nm illumination at zero gate voltage. And its responsivity and specific detectivity can be further improved to 13.85 A/W and 1.90 × 1010 Jones under a gate voltage regulation. The building block of present PtSe2/Si phototransistor opens a new venue to the design of high-performance photodetectors by combining the advantages of both 2D materials and conventional semiconductors.

Abstract

Two-dimensional (2D) layered materials have attracted extensive research interest in the field of high-performance photodetection due to their high carrier mobility, tunable bandgap, stability, and other excellent properties. Herein, we propose a gate-tunable, high-performance, self-driving, and wide detection range phototransistor based on a 2D PtSe2 on silicon-on-insulator (SOI). Benefiting from the strong built-in electric field of the PtSe2/Si heterostructure, the phototransistor has a fast response time (rise/fall time) of 36.7/32.6 μs. The PtSe2/Si phototransistor exhibits excellent photodetection performance over a broad spectral range from ultraviolet to near-infrared, including a responsivity of 1.07 A/W and a specific detectivity of 6.60 × 109 Jones under 808 nm illumination at zero gate voltage. The responsivity and specific detectivity of PtSe2/Si phototransistor at 5 V gate voltage are increased to 13.85 A/W and 1.90 × 1010 Jones under 808 nm illumination. Furthermore, the fabricated PtSe2/Si phototransistor array shows excellent uniformity, reproducibility, and long-term stability in terms of photoresponse performance with negligible variation between pixel cells. The architecture of present PtSe2/Si on SOI platform paves a new way of a general strategy to realize high-performance photodetectors by combining the advantages of both 2D materials and conventional semiconductors which is compatible with current Si-complementary metal oxide semiconductor (CMOS) process.

Electronic Supplementary Material

Download File(s)
12274_2022_5312_MOESM1_ESM.pdf (868.6 KB)

References

[1]

Long, M. S.; Wang, P.; Fang, H. H.; Hu, W. D. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2019, 29, 1803807.

[2]

Fang, H. H.; Hu, W. D. Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323.

[3]

Wang, Y. L.; Li, X.; Jiang, Z. B.; Tong, L.; Deng, W. T.; Gao, X. Y.; Huang, X. Y.; Zhou, H. L.; Yu, Y.; Ye, L. et al. Ultrahigh-speed graphene-based optical coherent receiver. Nat. Commun. 2021, 12, 5076.

[4]

Lu, Y.; Wang, Y.; Xu, C. H.; Xie, C.; Li, W. B.; Ding, J.; Zhou, W. Y.; Qin, Z. P.; Shen, X. Y.; Luo, L. B. Construction of PtSe2/Ge heterostructure-based short-wavelength infrared photodetector array for image sensing and optical communication applications. Nanoscale 2021, 13, 7606–7612.

[5]

Sheng, Z.; Liu, L.; Brouckaert, J.; He, S. L.; Van Thourhout, D. InGaAs PIN photodetectors integrated on silicon-on-insulator waveguides. Opt. Express 2010, 18, 1756–1761.

[6]

Shimatani, M.; Fukushima, S.; Okuda, S.; Ogawa, S. High-performance graphene/InSb heterojunction photodetectors for high-resolution mid-infrared image sensors. Appl. Phys. Lett. 2020, 117, 173102.

[7]

Tong, L.; Peng, Z. R.; Lin, R. F.; Li, Z.; Wang, Y. L.; Huang, X. Y.; Xue, K. H.; Xu, H. Y.; Liu, F.; Xia, H. et al. 2D materials-based homogeneous transistor-memory architecture for neuromorphic hardware. Science 2021, 373, 1353–1358.

[8]

Jiang, J.; Wen, Y.; Wang, H.; Yin, L.; Cheng, R. Q.; Liu, C. S.; Feng, L. P.; He, J. Recent advances in 2d materials for photodetectors. Adv. Electron. Mater. 2021, 7, 2001125.

[9]

Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.

[10]

Su, T. Y.; Medina, H.; Chen, Y. Z.; Wang, S. W.; Lee, S. S.; Shih, Y. C.; Chen, C. W.; Kuo, H. C.; Chuang, F. C.; Chueh, Y. L. Phase-engineered PtSe2-layered films by a plasma-assisted selenization process toward all PtSe2-based field effect transistor to highly sensitive, flexible, and wide-spectrum photoresponse photodetectors. Small 2018, 14, 1800032.

[11]

Zhuo, R. R.; Zeng, L. H.; Yuan, H. Y.; Wu, D.; Wang, Y. G.; Shi, Z. F.; Xu, T. T.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity. Nano Res. 2019, 12, 183–189.

[12]

Cao, B. L.; Ye, Z. M.; Yang, L.; Gou, L.; Wang, Z. G. Recent progress in van der Waals 2D PtSe2. Nanotechnology 2021, 32, 412001.

[13]

Zeng, L. H.; Lin, S. H.; Lou, Z. H.; Yuan, H. Y.; Long, H.; Li, Y. Y.; Lu, W.; Lau, S. P.; Wu, D.; Tsang, Y. H. Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1,550 nm. NPG Asia Mater. 2018, 10, 352–361.

[14]

Xie, C.; Zeng, L. H.; Zhang, Z. X.; Tsang, Y. H.; Luo, L. B.; Lee, J. H. High-performance broadband heterojunction photodetectors based on multilayered PtSe2 directly grown on a Si substrate. Nanoscale 2018, 10, 15285–15293.

[15]

Yang, W. H.; Jiang, X. Y.; Xiao, Y. T.; Fu, C.; Wan, J. K.; Yin, X.; Tong, X. W.; Wu, D.; Chen, L. M.; Luo, L. B. Detection of wavelength in the range from ultraviolet to near infrared light using two parallel PtSe2/thin Si Schottky junctions. Mater. Horiz. 2021, 8, 1976–1984.

[16]

Zeng, L. H.; Lin, S. H.; Li, Z. J.; Zhang, Z. X.; Zhang, T. F.; Xie, C.; Mak, C. H.; Chai, Y.; Lau, S. P.; Luo, L. B. et al. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Funct. Mater. 2018, 28, 1705970.

[17]

Ma, M. R.; Chen, H. H.; Zhou, K. N.; Xie, C.; Liang, Y.; Wang, L.; Wu, C. Y.; Yang, W. H.; Guo, J. W.; Luo, L. B. Multilayered PtSe2/pyramid-Si heterostructure array with light confinement effect for high-performance photodetection, image sensing and light trajectory tracking applications. J. Mater. Chem. C 2021, 9, 2823–2832.

[18]
Ye, P.; Xiao, H.; Zhu, Q. H.; Kong, Y. H.; Tang, Y. M.; Xu, M. S. Si-CMOS-compatible 2D PtSe2-based self-driven photodetector with ultrahigh responsivity and specific detectivity. Sci. China Mater., in press, https://doi.org/10.1007/s40843-022-2119-1.
[19]

Xu, H.; Wu, J. X.; Feng, Q. L.; Mao, N. N.; Wang, C. M.; Zhang, J. High responsivity and gate tunable graphene-MoS2 hybrid phototransistor. Small 2014, 10, 2300–2306.

[20]

Li, Y. C.; Li, X. X.; Zeng, G.; Chen, Y. C.; Chen, D. B.; Peng, B. F.; Zhu, L. Y.; Zhang, D. W.; Lu, H. L. High optoelectronic performance of a local-back-gate ReS2/ReSe2 heterojunction phototransistor with hafnium oxide dielectric. Nanoscale 2021, 13, 14435–14441.

[21]

Yang, Y. J.; Li, J. S.; Choi, S.; Jeon, S.; Cho, J. H.; Lee, B. H.; Lee, S. High-responsivity PtSe2 photodetector enhanced by photogating effect. Appl. Phys. Lett. 2021, 118, 013103.

[22]

Noori, Y. J.; Thomas, S.; Ramadan, S.; Smith, D. E.; Greenacre, V. K.; Abdelazim, N.; Han, Y. S.; Beanland, R.; Hector, A. L.; Klein, N. et al. Large-area electrodeposition of few-layer MoS2 on graphene for 2D material heterostructures. ACS Appl. Mater. Interfaces 2020, 12, 49786–49794.

[23]

Zhang, Q.; Xiao, X. X.; Li, L.; Geng, D. C.; Chen, W.; Hu, W. P. Additive-assisted growth of scaled and quality 2D materials. Small 2022, 18, 2107241.

[24]

Wan, X.; Chen, K.; Xu, J. B. Interface engineering for CVD graphene: Current status and progress. Small 2014, 10, 4443–4454.

[25]

He, J. B.; Jiang, W.; Zhu, X. D.; Zhang, R. J.; Wang, J. L.; Zhu, M. P.; Wang, S. Y.; Zheng, Y. X.; Chen, L. Y. Optical properties of thickness-controlled PtSe2 thin films studied via spectroscopic ellipsometry. Phys. Chem. Chem. Phys. 2020, 22, 26383–26389.

[26]

Jakhar, A.; Kumar, P.; Moudgil, A.; Dhyani, V.; Das, S. Optically pumped broadband terahertz modulator based on nanostructured PtSe2 thin films. Adv. Opt. Mater. 2020, 8, 1901714.

[27]

O’Brien, M.; McEvoy, N.; Motta, C.; Zheng, J. Y.; Berner, N. C.; Kotakoski, J.; Elibol, K.; Pennycook, T. J.; Meyer, J. C.; Yim, C. et al. Raman characterization of platinum diselenide thin films. 2D Mater. 2016, 3, 021004.

[28]

Prechtl, M.; Parhizkar, S.; Hartwig, O.; Lee, K.; Biba, J.; Stimpel-Lindner, T.; Gity, F.; Schels, A.; Bolten, J.; Suckow, S. et al. Hybrid devices by selective and conformal deposition of PtSe2 at low temperatures. Adv. Funct. Mater. 2021, 31, 2103936.

[29]

Paul Inbaraj, C. R.; Gudelli, V. K.; Mathew, R. J.; Ulaganathan, R. K.; Sankar, R.; Lin, H. Y.; Lin, H. I.; Liao, Y. M.; Cheng, H. Y.; Lin, K. H. et al. Sn-doping enhanced ultrahigh mobility In1−xSnxSe phototransistor. ACS Appl. Mater. Interfaces 2019, 11, 24269–24278.

[30]

Das, T.; Yang, E.; Seo, J. E.; Kim, J. H.; Park, E.; Kim, M.; Seo, D.; Kwak, J. Y.; Chang, J. Doping-free all PtSe2 transistor via thickness-modulated phase transition. ACS Appl. Mater. Interfaces 2021, 13, 1861–1871.

[31]
Rim, K.; Chan, K.; Shi, L.; Boyd, D.; Ott, J.; Klymko, N.; Cardone, F.; Tai, L.; Koester, S.; Cobb, M. et al. Fabrication and mobility characteristics of ultra-thin strained Si directly on insulator (SSDOI) MOSFETs. In IEEE International Electron Devices Meeting 2003, Washington, USA, 2003, pp 3.1.1–3.1.4.
[32]

Guan, X. W.; Wang, Z. W.; Hota, M. K.; Alshareef, H. N.; Wu, T. P-type SnO thin film phototransistor with perovskite-mediated photogating. Adv. Electron. Mater. 2019, 5, 1800538.

[33]

Huang, M. Q.; Li, S. M.; Zhang, Z. F.; Xiong, X.; Li, X. F.; Wu, Y. Q. Multifunctional high-performance van der Waals heterostructures. Nat. Nanotechnol. 2017, 12, 1148–1154.

[34]

Huo, N. J.; Konstantatos, G. Ultrasensitive all-2D MoS2 phototransistors enabled by an out-of-plane MoS2 PN homojunction. Nat. Commun. 2017, 8, 572.

[35]

Xiao, H.; Liang, T.; Xu, J.; Xu, M. S. Solution-processed monolithic CH3NH3PbI3/PbI2 vertical heterostructure for high-performance flexible and broadband photodetector. Adv. Opt. Mater. 2021, 9, 2100664.

[36]

Xiao, H.; Liang, T.; Xu, M. S. Growth of ultraflat PbI2 nanoflakes by solvent evaporation suppression for high-performance UV photodetectors. Small 2019, 15, 1901767.

[37]

Tian, W.; Zhou, H. P.; Li, L. Hybrid organic-inorganic perovskite photodetectors. Small 2017, 13, 1702107.

[38]

Xiao, H.; Liang, T.; Zhang, X. W.; Zhao, P.; Pi, X. D.; Xie, Q.; Xu, M. S. Cera alba-assisted ultraclean graphene transfer for high-performance PbI2 UV photodetectors. Nanotechnology 2020, 31, 365204.

[39]

Wu, D.; Guo, J. W.; Wang, C. Q.; Ren, X. Y.; Chen, Y. S.; Lin, P.; Zeng, L. H.; Shi, Z. F.; Li, X. J.; Shan, C. X. et al. Ultrabroadband and high-detectivity photodetector based on WS2/Ge heterojunction through defect engineering and interface passivation. ACS Nano 2021, 15, 10119–10129.

[40]

Zeng, L. H.; Wu, D.; Jie, J. S.; Ren, X. Y.; Hu, X.; Lau, S. P.; Chai, Y.; Tsang, Y. H. Van der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 µm. Adv. Mater. 2020, 32, 2004412.

[41]

Cui, S. J.; Mei, Z. X.; Zhang, Y. H.; Liang, H. L.; Du, X. L. Room-temperature fabricated amorphous Ga2O3 high-response-speed solar-blind photodetector on rigid and flexible substrates. Adv. Opt. Mater. 2017, 5, 1700454.

[42]

Li, W.; Dai, M. J.; Hu, Y. X.; Chen, H. Y.; Zhu, X. J.; Yang, Q. X.; Hu, P. G. Synchronous enhancement for responsivity and response speed in In2Se3 photodetector modulated by piezoresistive effect. ACS Appl. Mater. Interfaces 2019, 11, 47098–47105.

[43]

He, T.; Zhang, X. D.; Ding, X. Y.; Sun, C.; Zhao, Y. K.; Yu, Q.; Ning, J. Q.; Wang, R. X.; Yu, G. H.; Lu, S. L. et al. Broadband ultraviolet photodetector based on vertical Ga2O3/GaN nanowire array with high responsivity. Adv. Opt. Mater. 2019, 7, 1801563.

[44]

García-Hemme, E.; García-Hernansanz, R.; Olea, J.; Pastor, D.; del Prado, A.; Mártil, I.; González-Díaz, G. Room-temperature operation of a titanium supersaturated silicon-based infrared photodetector. Appl. Phys. Lett. 2014, 104, 211105.

[45]

Jayachandran, D.; Oberoi, A.; Sebastian, A.; Choudhury, T. H.; Shankar, B.; Redwing, J. M.; Das, S. A low-power biomimetic collision detector based on an in-memory molybdenum disulfide photodetector. Nat. Electron. 2020, 3, 646–655.

[46]

Xu, Y. J.; Shen, H. L.; Wu, D.; Zhao, Q. C.; Wang, Z. H.; Ge, J. W.; Zhang, W. Self-powered near-infrared MoS2/n-Si photodetectors with Al2O3 interface passivation. J. Alloys Compd. 2022, 902, 163878.

[47]

Zhang, Y.; Yu, Y. Q.; Mi, L. F.; Wang, H.; Zhu, Z. F.; Wu, Q. Y.; Zhang, Y. G.; Jiang, Y. In situ fabrication of vertical multilayered MoS2/Si homotype heterojunction for high-speed visible–near-infrared photodetectors. Small 2016, 12, 1062–1071.

[48]

Lan, C. Y.; Li, C.; Wang, S.; He, T. Y.; Jiao, T. P.; Wei, D. P.; Jing, W. K.; Li, L. Y.; Liu, Y. Zener tunneling and photoresponse of a WS2/Si van der Waals heterojunction. ACS Appl. Mater. Interfaces 2016, 8, 18375–18382.

[49]

Um, D. S.; Lee, Y.; Lim, S.; Park, J.; Yen, W. C.; Chueh, Y. L.; Kim, H. J.; Ko, H. InGaAs nanomembrane/Si van der Waals heterojunction photodiodes with broadband and high photoresponsivity. ACS Appl. Mater. Interfaces 2016, 8, 26105–26111.

[50]

Mitta, S. B.; Ali, F.; Yang, Z.; Moon, I.; Ahmed, F.; Yoo, T. J.; Lee, B. H.; Yoo, W. J. Gate-modulated ultrasensitive visible and near-infrared photodetection of oxygen plasma-treated WSe2 lateral pn-homojunctions. ACS Appl. Mater. Interfaces 2020, 12, 23261–23271.

[51]

Liu, Q. F.; Cook, B.; Gong, M. G.; Gong, Y. P.; Ewing, D.; Casper, M.; Stramel, A.; Wu, J. Printable transfer-free and wafer-size MoS2/graphene van der Waals heterostructures for high-performance photodetection. ACS Appl. Mater. Interfaces 2017, 9, 12728–12733.

Nano Research
Pages 7559-7567
Cite this article:
Chen Y, Zhu Q, Zhu X, et al. Gate-tunable high-performance broadband phototransistor array of two-dimensional PtSe2 on SOI. Nano Research, 2023, 16(5): 7559-7567. https://doi.org/10.1007/s12274-022-5312-4
Topics:

11619

Views

13

Crossref

5

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 04 July 2022
Revised: 01 November 2022
Accepted: 09 November 2022
Published: 05 December 2022
© Tsinghua University Press 2022
Return