Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Hair loss can cause psychological distress. Here, red organic light-emitting diode (OLED) light source is first introduced as the photobiomodulation therapy (PBMT) for hair growth and demonstrated as a promising and non-invasive therapeutic modality for alopecia. OLED exhibits unique advantages of homogeneous irradiation, flexible in form factor, and less heat generation. These features enable OLED to be an ideal candidate for wearable PBMT light sources. A systematic study of using red OLEDs to facilitate hair growth was conducted. The results show that OLEDs excellently promote hair regrowth. OLED irradiation can increase the length of the hair by a factor of 1.5 as compared to the control, and the hair regrowth area is enlarged by over 3 times after 20 days of treatments. Moreover, the mechanism of OLED that stimulates hair follicle regeneration is investigated in-vivo by conducting a systematic controlled experiments on mice with or without OLED PBMT. Based on the comprehensive histological and immunofluorescence staining studies, two key factors are identified for red OLEDs to facilitate hair follicle regeneration: (i) increased autophagy during the anagen phase of the hair growth cycle; (ii) increased blood oxygen content promoted by the accelerated microvascular blood flow.
Pratt, C. H.; King, L. E. Jr.; Messenger, A. G.; Christiano, A. M.; Sundberg, J. P. Alopecia areata. Nat. Rev. Dis. Prim. 2017, 3, 17011.
Pirastu, N.; Joshi, P. K.; de Vries, P. S.; Cornelis, M. C.; McKeigue, P. M.; Keum, N.; Franceschini, N.; Colombo, M.; Giovannucci, E. L.; Spiliopoulou, A. et al. GWAS for male-pattern baldness identifies 71 susceptibility loci explaining 38% of the risk. Nat. Commun. 2017, 8, 1584.
Bhat, J.; Birch, J.; Whitehurst, C.; Lanigan, S. W. A single-blinded randomised controlled study to determine the efficacy of Omnilux Revive facial treatment in skin rejuvenation. Lasers Med. Sci. 2005, 20, 6–10.
Russell, B. A.; Kellett, N.; Reilly, L. R. A study to determine the efficacy of combination LED light therapy (633 nm and 830 nm) in facial skin rejuvenation. J. Cosmet. Laser Ther. 2005, 7, 196–200.
Degitz, K. Phototherapy, photodynamic therapy and lasers in the treatment of acne. J. Dtsch. Dermatol. Ges. 2009, 7, 1048–1054.
Hædersdal, M.; Togsverd-Bo, K.; Wulf, H. C. Evidence-based review of lasers, light sources and photodynamic therapy in the treatment of acne vulgaris. J. Eur. Acad. Dermatol. Venereol. 2008, 22, 267–278.
Carrasco, E.; Calvo, M. I.; Blázquez-Castro, A.; Vecchio, D.; Zamarrón, A.; de Almeida, I. J. D.; Stockert, J. C.; Hamblin, M. R.; Juarranz, Á.; Espada, J. Photoactivation of ROS production in situ transiently activates cell proliferation in mouse skin and in the hair follicle stem cell niche promoting hair growth and wound healing. J. Invest. Dermatol. 2015, 135, 2611–2622.
Santos, Z.; Avci, P.; Hamblin, M. R. Drug discovery for alopecia: Gone today, hair tomorrow. Expert Opin. Drug Discov. 2015, 10, 269–292.
Lanzafame, R. J.; Blanche, R. R.; Bodian, A. B.; Chiacchierini, R. P.; Fernandez-Obregon, A.; Kazmirek, E. R. The growth of human scalp hair mediated by visible red light laser and LED sources in males. Lasers Surg. Med. 2013, 45, 487–495.
Fushimi, T.; Inui, S.; Ogasawara, M.; Nakajima, T.; Hosokawa, K.; Itami, S. Narrow-band red LED light promotes mouse hair growth through paracrine growth factors from dermal papilla. J. Dermatol. Sci. 2011, 64, 246–248.
Tsai, S. R.; Hamblin, M. R. Biological effects and medical applications of infrared radiation. J. Photochem. Photobiol. B:Biol. 2017, 170, 197–207.
Silveira, F. M.; de Paglioni, M. P.; Marques, M. M.; Santos-Silva, A. R.; Migliorati, C. A.; Arany, P.; Martins, M. D. Examining tumor modulating effects of photobiomodulation therapy on head and neck squamous cell carcinomas. Photochem. Photobiol. Sci. 2019, 18, 1621–1637.
Salehpour, F.; Mahmoudi, J.; Kamari, F.; Sadigh-Eteghad, S.; Rasta, S. H.; Hamblin, M. R. Brain photobiomodulation therapy: A narrative review. Mol. Neurobiol. 2018, 55, 6601–6636.
Salehpour, F.; Hamblin, M. R. Photobiomodulation for Parkinson’s disease in animal models: A systematic review. Biomolecules 2020, 10, 610.
Cotler, H. B.; Chow, R. T.; Hamblin, M. R.; Carroll, J. The use of low level laser therapy (LLLT) for musculoskeletal pain. MOJ Orthop. Rheumatol. 2015, 2, 00068.
Chung, H.; Dai, T. H.; Sharma, S. K.; Huang, Y. Y.; Carroll, J. D.; Hamblin, M. R. The nuts and bolts of low-level laser (light) therapy. Ann. Biomed. Eng. 2012, 40, 516–533.
Barolet, D. Light-emitting diodes (LEDs) in dermatology. Semin. Cutan. Med. Surg. 2008, 27, 227–238.
Kim, W. S.; Calderhead, R. G. Is light-emitting diode phototherapy (LED-LLLT) really effective? Laser Ther. 2011, 20, 205–215.
Calderhead, R. G.; Kim, W. S.; Ohshiro, T.; Trelles, M. A.; Vasily, D. B. Adjunctive 830 nm light-emitting diode therapy can improve the results following aesthetic procedures. Laser Ther. 2015, 24, 277–289.
Suchonwanit, P.; Chalermroj, N.; Khunkhet, S. Low-level laser therapy for the treatment of androgenetic alopecia in Thai men and women: A 24-week, randomized, double-blind, sham device-controlled trial. Lasers Med. Sci. 2019, 34, 1107–1114.
George, S.; Hamblin, M. R.; Abrahamse, H. Effect of red light and near infrared laser on the generation of reactive oxygen species in primary dermal fibroblasts. J. Photochem. Photobiol. B:Biol. 2018, 188, 60–68.
Weiss, R. A.; McDaniel, D. H.; Geronemus, R. G.; Weiss, M. A. Clinical trial of a novel non-thermal LED array for reversal of photoaging: Clinical, histologic, and surface profilometric results. Lasers Surg. Med. 2005, 36, 85–91.
Hamblin, M. R. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys. 2017, 4, 337–361.
Sasabe, H.; Kido, J. Development of high performance OLEDs for general lighting. J. Mater. Chem. C 2013, 1, 1699–1707.
Han, T. H.; Lee, Y.; Choi, M. R.; Woo, S. H.; Bae, S. H.; Hong, B. H.; Ahn, J. H.; Lee, T. W. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photonics 2012, 6, 105–110.
Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lüssem, B.; Leo, K. White organic light-emitting diodes with fluorescent tube efficiency. Nature 2009, 459, 234–238.
Wu, S. F.; Li, S. H.; Wang, Y. K.; Huang, C. C.; Sun, Q.; Liang, J. J.; Liao, L. S.; Fung, M. K. White organic LED with a luminous efficacy exceeding 100 lm·W–1 without light out-coupling enhancement techniques. Adv. Funct. Mater. 2017, 27, 1701314.
Huang, C. C.; Zhang, Y. J.; Zhou, J. G.; Sun, S. Q.; Luo, W.; He, W.; Wang, J. N.; Shi, X. B.; Fung, M. K. Hybrid tandem white OLED with long lifetime and 150 lm·W–1 in luminous efficacy based on TADF blue emitter stabilized with phosphorescent red emitter. Adv. Opt. Mater. 2020, 8, 2000727.
Lian, C.; Piksa, M.; Yoshida, K.; Persheyev, S.; Pawlik, K. J.; Matczyszyn, K.; Samuel, I. D. W. Flexible organic light-emitting diodes for antimicrobial photodynamic therapy. npj Flex. Electron. 2019, 3, 8.
Jeon, Y.; Choi, H. R.; Lim, M.; Choi, S.; Kim, H.; Kwon, J. H.; Park, K. C.; Choi, K. C. A wearable photobiomodulation patch using a flexible red-wavelength OLED and its in vitro differential cell proliferation effects. Adv. Mater. Technol. 2018, 3, 1700391.
Jeon, Y.; Choi, H. R.; Kwon, J. H.; Choi, S.; Nam, K. M.; Park, K. C.; Choi, K. C. Sandwich-structure transferable free-form OLEDs for wearable and disposable skin wound photomedicine. Light Sci. Appl. 2019, 8, 114.
Kim, T. H.; Kim, N. J.; Youn, J. I. Evaluation of wavelength-dependent hair growth effects on low-level laser therapy: An experimental animal study. Lasers Med. Sci. 2015, 30, 1703–1709.
Lee, G. H.; Moon, H.; Kim, H.; Lee, G. H.; Kwon, W.; Yoo, S.; Myung, D.; Yun, S. H.; Bao, Z. N.; Hahn, S. K. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 2020, 5, 149–165.
Van Tran, V.; Chae, M.; Moon, J. Y.; Lee, Y. C. Light emitting diodes technology-based photobiomodulation therapy (PBMT) for dermatology and aesthetics: Recent applications, challenges, and perspectives. Opt. Laser Technol. 2021, 135, 106698.
Webb, R. C.; Bonifas, A. P.; Behnaz, A.; Zhang, Y. H.; Yu, K. J.; Cheng, H. Y.; Shi, M. X.; Bian, Z. G.; Liu, Z. J.; Kim, Y. S. et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 2013, 12, 938–944.
Lee, H. E.; Lee, S. H.; Jeong, M.; Shin, J. H.; Ahn, Y.; Kim, D.; Oh, S. H.; Yun, S. H.; Lee, K. J. Trichogenic photostimulation using monolithic flexible vertical AlGaInP light-emitting diodes. ACS Nano 2018, 12, 9587–9595.
Huang, Y. Y.; Chen, A. C. H.; Carroll, J. D.; Hamblin, M. R. Biphasic dose response in low level light therapy. Dose Response 2009, 7, 358–383.
Jeon, Y.; Choi, H. R.; Park, K. C.; Choi, K. C. Flexible organic light-emitting-diode-based photonic skin for attachable phototherapeutics. J. Soc. Inf. Disp. 2020, 28, 324–332.
Sundman, A. S.; Van Poucke, E.; Svensson Holm, A. C.; Faresjö, Å.; Theodorsson, E.; Jensen, P.; Roth, L. S. V. Long-term stress levels are synchronized in dogs and their owners. Sci. Rep. 2019, 9, 7391.
Gilhar, A.; Etzioni, A.; Paus, R. Alopecia areata. N. Engl. J. Med. 2012, 366, 1515–1525.
Chueh, S. C.; Lin, S. J.; Chen, C. C.; Lei, M. X.; Wang, L. M.; Widelitz, R.; Hughes, M. W.; Jiang, T. X.; Chuong, C. M. Therapeutic strategy for hair regeneration: Hair cycle activation, Niche environment modulation, wound-induced follicle neogenesis, and stem cell engineering. Expert Opin. Biol. Ther. 2013, 13, 377–391.
Gundamaraju, R.; Lu, W. Y.; Paul, M. K.; Jha, N. K.; Gupta, P. K.; Ojha, S.; Chattopadhyay, I.; Rao, P. V.; Ghavami, S. Autophagy and EMT in cancer and metastasis: Who controls whom? Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2022, 1868, 166431.
Cheng, L. Z.; Li, W.; Chen, Y. X.; Lin, Y. J.; Miao, Y. Autophagy and diabetic encephalopathy: Mechanistic insights and potential therapeutic implications. Aging Dis. 2022, 13, 447–457.