AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhanced performance for propane dehydrogenation through Pt clusters alloying with copper in zeolite

Jie Zhou1Ying Zhang1Hao Liu1Chao Xiong1Peng Hu1Hao Wang1Shenwei Chen1,2( )Hongbing Ji1,2,3( )
Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
Huizhou Research Institute, Sun Yat-sen University, Huizhou 516081, China
College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
Show Author Information

Graphical Abstract

We describe a novel method to synthesize Pt clusters alloying with copper in zeolite for propane dehydrogenation. In particular, 0.1Pt0.4CuK@S-1 exhibits a propane conversion of 24.79% with 98.20% selectivity of propene, and the specific activity of propylene formation is up to 32 mol·gPt–1·h–1 at 500 °C. No obvious deactivation is observed even after 73 h on stream, affording an extremely low deactivation constant of 0.00032 h–1.

Abstract

Metal alloys have been widely applied for heterogeneous catalysis, especially alkane dehydrogenation. However, the catalysts always suffer from sintering and coke deposition due to the rigorous reaction conditions. Herein, we described an original approach to prepare a catalyst where highly dispersed Pt clusters alloying with copper were encapsulated in silicalite-1 (S-1) zeolite for propane dehydrogenation (PDH). The introduction of Cu species significantly enhances the catalytic activity and prolongs the lifetime of the catalyst. 0.1Pt0.4CuK@S-1 exhibits a propane conversion of 24.8% with 98.2% selectivity of propene, and the specific activity of propylene formation is up to 32 mol·gPt−1·h−1 at 500 °C. No obvious deactivation is observed even after 73 h on stream, affording an extremely low deactivation constant of 0.00032 h−1. The excellent activity and stability are ascribed to the confinement of zeolites and the stabilization of Cu species for Pt clusters.

Electronic Supplementary Material

Download File(s)
12274_2022_5317_MOESM1_ESM.pdf (7 MB)

References

[1]

Chen, S.; Chang, X.; Sun, G. D.; Zhang, T. T.; Xu, Y. Y.; Wang, Y.; Pei, C. L.; Gong, J. L. Propane dehydrogenation: Catalyst development, new chemistry, and emerging technologies. Chem. Soc. Rev. 2021, 50, 3315–3354.

[2]

Dai, Y. H.; Gao, X.; Wang, Q. J.; Wan, X. Y.; Zhou, C. M.; Yang, Y. H. Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane. Chem. Soc. Rev. 2021, 50, 5590–5630.

[3]

Ou, Z. Q.; Li, Y. Z.; Wu, W. C.; Bi, Y. F.; Xing, E. H.; Yu, T. W.; Chen, Q. Encapsulating subnanometric metal clusters in zeolites for catalysis and their challenges. Chem. Eng. J. 2022, 430, 132925.

[4]

Yan, W. F.; Sun, Q. M.; Yu, J. H. Dehydrogenation of propane marches on. Matter 2021, 4, 2642–2644.

[5]

Chen, S.; Pei, C. L.; Sun, G. D.; Zhao, Z. J.; Gong, J. L. Nanostructured catalysts toward efficient propane dehydrogenation. Acc. Mater. Res. 2020, 1, 30–40.

[6]

Hu, Z. P.; Yang, D. D.; Wang, Z.; Yuan, Z. Y. State-of-the-art catalysts for direct dehydrogenation of propane to propylene. Chin. J. Catal. 2019, 40, 1233–1254.

[7]

Nakaya, Y.; Hirayama, J.; Yamazoe, S.; Shimizu, K. I.; Furukawa, S. Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation. Nat. Commun. 2020, 11, 2838.

[8]

Sun, G. D.; Zhao, Z. J.; Mu, R. T.; Zha, S.; Li, L. L.; Chen, S.; Zang, K. T.; Luo, J.; Li, Z. L.; Purdy, S. C. et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat. Commun. 2018, 9, 4454.

[9]

Chen, S.; Zhao, Z. J.; Mu, R. T.; Chang, X.; Luo, J.; Purdy, S. C.; Kropf, A. J.; Sun, G. D.; Pei, C. L.; Miller, J. T. et al. Propane dehydrogenation on single-site [PtZn4] intermetallic catalysts. Chem 2021, 7, 387–405.

[10]

Sun, Q. M.; Wang, N.; Yu, J. H. Advances in catalytic applications of zeolite-supported metal catalysts. Adv. Mater. 2021, 33, 2104442.

[11]

Clatworthy, E. B.; Konnov, S. V.; Dubray, F.; Nesterenko, N.; Gilson, J. P.; Mintova, S. Emphasis on the properties of metal-containing zeolites operating outside the comfort zone of current heterogeneous catalytic reactions. Angew. Chem., Int. Ed. 2020, 59, 19414–19432.

[12]

Sun, Q. M.; Wang, N.; Bing, Q. M.; Si, R.; Liu, J. Y.; Bai, R. S.; Zhang, P.; Jia, M. J.; Yu, J. H. Subnanometric hybrid Pd-M(OH)2, M = Ni, Co, clusters in zeolites as highly efficient nanocatalysts for hydrogen generation. Chem 2017, 3, 477–493.

[13]

Liu, L. C.; Lopez-Haro, M.; Lopes, C. W.; Li, C. G.; Concepcion, P.; Simonelli, L.; Calvino, J. J.; Corma, A. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nat. Mater. 2019, 18, 866–873.

[14]

Zhang, B. F.; Zheng, L. R.; Zhai, Z. W.; Li, G. Z.; Liu, G. Z. Subsurface-regulated PtGa nanoparticles confined in silicalite-1 for propane dehydrogenation. ACS Appl. Mater. Interfaces 2021, 13, 16259–16266.

[15]

Sun, Q. M.; Chen, B. W. J.; Wang, N.; He, Q.; Chang, A.; Yang, C. M.; Asakura, H.; Tanaka, T.; Hülsey, M. J.; Wang, C. H. et al. Zeolite-encaged Pd-Mn nanocatalysts for CO2 hydrogenation and formic acid dehydrogenation. Angew. Chem., Int. Ed. 2020, 59, 20183–20191.

[16]

Tang, X.; Lou, Y.; Zhao, R. L.; Tang, B. J.; Guo, W. Y.; Guo, Y. L.; Zhan, W. C.; Jia, Y. Y.; Wang, L.; Dai, S. et al. Confinement of subnanometric PdCo bimetallic oxide clusters in zeolites for methane complete oxidation. Chem. Eng. J. 2021, 418, 129398.

[17]

Sun, Q. M.; Wang, N.; Fan, Q. Y.; Zeng, L.; Mayoral, A.; Miao, S.; Yang, R. O.; Jiang, Z.; Zhou, W.; Zhang, J. C. et al. Subnanometer bimetallic platinum-zinc clusters in zeolites for propane dehydrogenation. Angew. Chem., Int. Ed. 2020, 59, 19450–19459.

[18]

Han, Z. P.; Li, S. R.; Jiang, F.; Wang, T.; Ma, X. B.; Gong, J. L. Propane dehydrogenation over Pt-Cu bimetallic catalysts: The nature of coke deposition and the role of copper. Nanoscale 2014, 6, 10000–10008.

[19]

Wang, L.; Wang, Y.; Zhang, C. W.; Wen, J.; Weng, X. F.; Shi, L. A boron nitride nanosheet-supported Pt/Cu cluster as a high-efficiency catalyst for propane dehydrogenation. Catal. Sci. Technol. 2020, 10, 1248–1255.

[20]

Ren, G. Q.; Pei, G. X.; Ren, Y. J.; Liu, K. P.; Chen, Z. Q.; Yang, J. Y.; Su, Y.; Liu, X. Y.; Li, W. Z.; Zhang, T. Effect of group IB metals on the dehydrogenation of propane to propylene over anti-sintering Pt/MgAl2O4. J. Catal. 2018, 366, 115–126.

[21]

Chai, Y. C.; Wu, G. J.; Liu, X. Y.; Ren, Y. J.; Dai, W. L.; Wang, C. M.; Xie, Z. K.; Guan, N. J.; Li, L. D. Acetylene-selective hydrogenation catalyzed by cationic nickel confined in zeolite. J. Am. Chem. Soc. 2019, 141, 9920–9927.

[22]

Hu, Z. P.; Qin, G. Q.; Han, J. F.; Zhang, W. N.; Wang, N.; Zheng, Y. J.; Jiang, Q. K.; Ji, T.; Yuan, Z. Y.; Xiao, J. P. et al. Atomic insight into the local structure and microenvironment of isolated Co-Motifs in MFI zeolite frameworks for propane dehydrogenation. J. Am. Chem. Soc. 2022, 144, 12127–12137.

[23]

Qi, L.; Babucci, M.; Zhang, Y. F.; Lund, A.; Liu, L. M.; Li, J. W.; Chen, Y. Z.; Hoffman, A. S.; Bare, S. R.; Han, Y. et al. Propane dehydrogenation catalyzed by isolated Pt atoms in ≡SiOZn-OH nests in dealuminated zeolite Beta. J. Am. Chem. Soc. 2021, 143, 21364–21378.

[24]

Xu, Z. K.; Yue, Y. Y.; Bao, X. J.; Xie, Z. L.; Zhu, H. B. Propane dehydrogenation over Pt clusters localized at the Sn single-site in zeolite framework. ACS Catal. 2020, 10, 818–828.

[25]

Yang, Z. Y.; Li, H.; Zhou, H.; Wang, L.; Wang, L. X.; Zhu, Q. Y.; Xiao, J. P.; Meng, X. J.; Chen, J. X.; Xiao, F. S. Coking-resistant iron catalyst in ethane dehydrogenation achieved through siliceous zeolite modulation. J. Am. Chem. Soc. 2020, 142, 16429–16436.

[26]

Hai, X.; Xi, S. B.; Mitchell, S.; Harrath, K.; Xu, H. M.; Akl, D. F.; Kong, D. B.; Li, J.; Li, Z. J.; Sun, T. et al. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nat. Nanotechnol. 2022, 17, 174–181.

[27]

Zhang, X.; Cui, G. Q.; Feng, H. S.; Chen, L. F.; Wang, H.; Wang, B.; Zhang, X.; Zheng, L. R.; Hong, S.; Wei, M. Platinum-copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis. Nat. Commun. 2019, 10, 5812.

[28]

Jones, J.; Xiong, H. F.; DeLaRiva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Pereira Hernández, X. I. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154.

[29]

Wang, Y. S.; Hu, Z. P.; Lv, X. W.; Chen, L.; Yuan, Z. Y. Ultrasmall PtZn bimetallic nanoclusters encapsulated in silicalite-1 zeolite with superior performance for propane dehydrogenation. J. Catal. 2020, 385, 61–69.

[30]

Cao, P.; Lin, L.; Qi, H. F.; Chen, R.; Wu, Z. J.; Li, N.; Zhang, T.; Luo, W. H. Zeolite-encapsulated Cu nanoparticles for the selective hydrogenation of furfural to furfuryl alcohol. ACS Catal. 2021, 11, 10246–10256.

[31]

Wang, N.; Sun, Q. M.; Bai, R. S.; Li, X.; Guo, G. Q.; Yu, J. H. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J. Am. Chem. Soc. 2016, 138, 7484–7487.

[32]

Wang, L. X.; Wang, L.; Meng, X. J.; Xiao, F. S. New strategies for the preparation of sinter-resistant metal-nanoparticle-based catalysts. Adv. Mater. 2019, 31, 1901905.

[33]

Zhang, B. F.; Li, G. Z.; Liu, S. B.; Qin, Y. C.; Song, L. J.; Wang, L.; Zhang, X. W.; Liu, G. Z. Boosting propane dehydrogenation over PtZn encapsulated in an epitaxial high-crystallized zeolite with a low surface barrier. ACS Catal. 2022, 12, 1310–1314.

[34]

Song, S. J.; Yang, K.; Zhang, P.; Wu, Z. J.; Li, J.; Su, H.; Dai, S.; Xu, C. M.; Li, Z. X.; Liu, J. et al. Silicalite-1 stabilizes Zn-hydride species for efficient propane dehydrogenation. ACS Catal. 2022, 12, 5997–6006.

[35]

Pan, Y.; Bhowmick, A.; Wu, W.; Zhang, Y.; Diao, Y. X.; Zheng, A. G.; Zhang, C.; Xie, R. X.; Liu, Z. X.; Meng, J. Q. et al. Titanium silicalite-1 nanosheet-supported platinum for non-oxidative ethane dehydrogenation. ACS Catal. 2021, 11, 9970–9985.

Nano Research
Pages 6537-6543
Cite this article:
Zhou J, Zhang Y, Liu H, et al. Enhanced performance for propane dehydrogenation through Pt clusters alloying with copper in zeolite. Nano Research, 2023, 16(5): 6537-6543. https://doi.org/10.1007/s12274-022-5317-z
Topics:

4066

Views

17

Crossref

12

Web of Science

14

Scopus

1

CSCD

Altmetrics

Received: 06 September 2022
Revised: 26 October 2022
Accepted: 10 November 2022
Published: 21 January 2023
© Tsinghua University Press 2022
Return