AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Magnetocontrollable droplet mobility on liquid crystal-infused porous surfaces

Yang Xu1Yuxing Yao2Weichen Deng1Jen-Chun Fang1Robert L. Dupont1Meng Zhang1Simon Čopar3Uroš Tkalec4,5,6Xiaoguang Wang1,7( )
William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia
Institute of Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
Department of Condensed Matter Physics, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
Sustainability Institute, The Ohio State University, Columbus, OH 43210, USA
Show Author Information

Graphical Abstract

The dynamics of a droplet on a nematic liquid crystal film can be manipulated by tuning the applied direction and strength of a magnetic field. In contrast, a magnetic field has no effect on the mobility of droplets on isotropic liquid crystal films.

Abstract

Magnetocontrollable droplet mobility on surfaces of both solids and simple fluids have been widely used in a wide range of applications. However, little is understood about the effect of the magnetic field on the wettability and mobility of droplets on structured fluids. Here, we report the manipulation of the dynamic behaviors of water droplets on a film of thermotropic liquid crystals (LCs). We find that the static wetting behavior and static friction of water droplets on a 4’-octyl-4-biphenylcarbonitrile (8CB) film strongly depend on the LC mesophases, and that a magnetic field caused no measurable change to these properties. However, we find that the droplet dynamics can be affected by a magnetic field as it slides on a nematic 8CB film, but not on isotropic 8CB, and is dependent on both the direction and strength of the magnetic field. By measuring the dynamic friction of a droplet sliding on a nematic 8CB film, we find that a magnetic field alters the internal orientational ordering of the 8CB which in turn affects its viscosity. We support this interpretation with a scaling argument using the LC magnetic coherence length that includes (i) the elastic energy from the long-range orientational ordering of 8CB and (ii) the free energy from the interaction between 8CB and a magnetic field. Overall, these results advance our understanding of droplet mobility on LC films and enable new designs for responsive surfaces that can manipulate the mobility of water droplets.

Electronic Supplementary Material

Video
12274_2022_5318_MOESM1_ESM.mp4
Download File(s)
12274_2022_5318_MOESM2_ESM.pdf (687.4 KB)
12274_2022_5318_MOESM3_ESM.pdf (2.3 MB)

References

[1]

Xu, W. H.; Zheng, H. X.; Liu, Y.; Zhou, X. F.; Zhang, C.; Song, Y. X.; Deng, X.; Leung, M.; Yang, Z. B.; Xu, R. X. et al. A droplet-based electricity generator with high instantaneous power density. Nature 2020, 578, 392–396.

[2]

Guo, Z. Q.; Zhang, L.; Monga, D.; Stone, H. A.; Dai, X. M. Hydrophilic slippery surface enabled coarsening effect for rapid water harvesting. Cell Rep. Phys. Sci. 2021, 2, 100387.

[3]

Chen, H. W.; Ran, T.; Gan, Y.; Zhou, J. J.; Zhang, Y.; Zhang, L. W.; Zhang, D. Y.; Jiang, L. Ultrafast water harvesting and transport in hierarchical microchannels. Nat. Mater. 2018, 17, 935–942.

[4]

Dai, X. M.; Sun, N.; Nielsen, S. O.; Stogin, B. B.; Wang, J.; Yang, S. K.; Wong, T. S. Hydrophilic directional slippery rough surfaces for water harvesting. Sci. Adv. 2018, 4, eaaq0919.

[5]

Maji, K.; Das, A.; Dhar, M.; Manna, U. Synergistic chemical patterns on a hydrophilic slippery liquid infused porous surface (SLIPS) for water harvesting applications. J. Mater. Chem. A 2020, 8, 25040–25046.

[6]

Shang, L. R.; Cheng, Y.; Zhao, Y. J. Emerging droplet microfluidics. Chem. Rev. 2017, 117, 7964–8040.

[7]

Kaminski, T. S.; Garstecki, P. Controlled droplet microfluidic systems for multistep chemical and biological assays. Chem. Soc. Rev. 2017, 46, 6210–6226.

[8]

Jiang, J. K.; Gao, J.; Zhang, H. D.; He, W. Q.; Zhang, J. Q.; Daniel, D.; Yao, X. Directional pumping of water and oil microdroplets on slippery surface. Proc. Natl. Acad. Sci. USA 2019, 116, 2482–2487.

[9]

Liu, M. J.; Wang, S. T.; Jiang, L. Nature-inspired superwettability systems. Nat. Rev. Mater. 2017, 2, 17036.

[10]

Manna, U.; Lynn, D. M. Fabrication of liquid-infused surfaces using reactive polymer multilayers: Principles for manipulating the behaviors and mobilities of aqueous fluids on slippery liquid interfaces. Adv. Mater. 2015, 27, 3007–3012.

[11]

Hou, X.; Zhang, Y. S.; Santiago, G. T. D.; Alvarez, M. M.; Ribas, J.; Jonas, S. J.; Weiss, P. S.; Andrews, A. M.; Aizenberg, J.; Khademhosseini, A. Interplay between materials and microfluidics. Nat. Rev. Mater. 2017, 2, 17016.

[12]

Su, B.; Wang, S. T.; Song, Y. L.; Jiang, L. A miniature droplet reactor built on nanoparticle-derived superhydrophobic pedestals. Nano Res. 2010, 4, 266–273.

[13]

Wei, Y. Y.; Cheng, G. Y.; Ho, H. P.; Ho, Y. P.; Yong, K. T. Thermodynamic perspectives on liquid-liquid droplet reactors for biochemical applications. Chem. Soc. Rev. 2020, 49, 6555–6567.

[14]

Yao, Y. X.; Bennett, R. K. A.; Xu, Y.; Rather, A. M.; Li, S. C.; Cheung, T. C.; Bhanji, A.; Kreder, M. J.; Daniel, D.; Adera, S. et al. Wettability-based ultrasensitive detection of amphiphiles through directed concentration at disordered regions in self-assembled monolayers. Proc. Natl. Acad. Sci. USA 2022, 119, e2211042119.

[15]

Li, W.; Tang, X.; Wang, L. Q. Photopyroelectric microfluidics. Sci. Adv. 2020, 6, eabc1693.

[16]

Gao, Z. F.; Liu, R.; Wang, J. H.; Dai, J.; Huang, W. H.; Liu, M. J.; Wang, S. T.; Xia, F.; Jiang, L. Controlling droplet motion on an organogel surface by tuning the chain length of DNA and its biosensing application. Chem 2018, 4, 2929–2943.

[17]

Courtney, M.; Chen, X. M.; Chan, S.; Mohamed, T.; Rao, P. P. N.; Ren, C. L. Droplet microfluidic system with on-demand trapping and releasing of droplet for drug screening applications. Anal. Chem. 2017, 89, 910–915.

[18]

Li, A.; Li, H. Z.; Li, Z.; Zhao, Z. P.; Li, K. Z.; Li, M. Z.; Song, Y. L. Programmable droplet manipulation by a magnetic-actuated robot. Sci. Adv. 2020, 6, eaay5808.

[19]

Wang, C.; Wang, D. Y.; Miao, W. N.; Shi, L. X.; Wang, S. T.; Tian, Y.; Jiang, L. Bioinspired ultrafast-responsive nanofluidic system for ion and molecule transport with speed control. ACS Nano 2020, 14, 12614–12620.

[20]

Zhan, Y. Y.; Zhou, G. F.; Lamers, B. A. G.; Visschers, F. L. L.; Hendrix, M. M. R. M.; Broer, D. J.; Liu, D. Q. Artificial organic skin wets its surface by field-induced liquid secretion. Matter 2020, 3, 782–793.

[21]

Zheng, Y. M.; Bai, H.; Huang, Z. B.; Tian, X. L.; Nie, F. Q.; Zhao, Y.; Zhai, J.; Jiang, L. Directional water collection on wetted spider silk. Nature 2010, 463, 640–643.

[22]

Park, K. C.; Kim, P.; Grinthal, A.; He, N.; Fox, D.; Weaver, J. C.; Aizenberg, J. Condensation on slippery asymmetric bumps. Nature 2016, 531, 78–82.

[23]

Ju, J.; Bai, H.; Zheng, Y. M.; Zhao, T. Y.; Fang, R. C.; Jiang, L. A multi-structural and multi-functional integrated fog collection system in cactus. Nat. Commun. 2012, 3, 1247.

[24]

Tang, X.; Li, W.; Wang, L. Q. Furcated droplet motility on crystalline surfaces. Nat. Nanotechnol. 2021, 16, 1106–1112.

[25]

Jin, Y. K.; Xu, W. H.; Zhang, H. H.; Li, R. R.; Sun, J.; Yang, S. Y.; Liu, M. J.; Mao, H. Y.; Wang, Z. K. Electrostatic tweezer for droplet manipulation. Proc. Natl. Acad. Sci. USA 2022, 119, e2105459119.

[26]

Guo, T. Q.; Che, P. D.; Heng, L. P.; Fan, L. Z.; Jiang, L. Anisotropic slippery surfaces: Electric-driven smart control of a drop’s slide. Adv. Mater. 2016, 28, 6999–7007.

[27]

Zhang, P. R.; Chen, C. Y.; Su, X. Y.; Mai, J.; Gu, Y. Y.; Tian, Z. H.; Zhu, H. D.; Zhong, Z. W.; Fu, H.; Yang, S. J. et al. Acoustic streaming vortices enable contactless, digital control of droplets. Sci. Adv. 2020, 6, eaba0606.

[28]

Collignon, S.; Friend, J.; Yeo, L. Planar microfluidic drop splitting and merging. Lab Chip 2015, 15, 1942–1951.

[29]

Wang, F.; Liu, M. J.; Liu, C.; Zhao, Q. L.; Wang, T.; Wang, Z. K.; Du, Z. M. Light-induced charged slippery surfaces. Sci. Adv. 2022, 8, eabp9369.

[30]

Tang, X.; Wang, L. Q. Loss-free photo-manipulation of droplets by pyroelectro-trapping on superhydrophobic surfaces. ACS Nano 2018, 12, 8994–9004.

[31]

Timonen, J. V. I.; Latikka, M.; Leibler, L.; Ras, R. H. A.; Ikkala, O. Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces. Science 2013, 341, 253–257.

[32]

Liu, X. B.; Kent, N.; Ceballos, A.; Streubel, R.; Jiang, Y. F.; Chai, Y.; Kim, P. Y.; Forth, J.; Hellman, F.; Shi, S. W. et al. Reconfigurable ferromagnetic liquid droplets. Science 2019, 365, 264–267.

[33]

Zhang, J. Q.; Wang, X. J.; Wang, Z. Y.; Pan, S. F.; Yi, B.; Ai, L. Q.; Gao, J.; Mugele, F.; Yao, X. Wetting ridge assisted programmed magnetic actuation of droplets on ferrofluid-infused surface. Nat. Commun. 2021, 12, 7136.

[34]

Feng, L.; He, X. Y.; Zhu, J. L.; Shi, W. Y. Magnetic manipulation of diamagnetic droplet on slippery liquid-infused porous surface. Phys. Rev. Fluids 2022, 7, 053602.

[35]

Roy, P. K.; Bormashenko, E.; Frenkel, M.; Legchenkova, I.; Shoval, S. Magnetic field induced motion of water droplets and bubbles on the lubricant coated surface. Colloid Surf. A 2020, 597, 124773.

[36]

Volk, A. A.; Epps, R. W.; Abolhasani, M. Accelerated development of colloidal nanomaterials enabled by modular microfluidic reactors: Toward autonomous robotic experimentation. Adv. Mater. 2021, 33, 2004495.

[37]

Wang, W. D.; Timonen, J. V. I.; Carlson, A.; Drotlef, D. M.; Zhang, C. T.; Kolle, S.; Grinthal, A.; Wong, T. S.; Hatton, B.; Kang, S. H. et al. Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography. Nature 2018, 559, 77–82.

[38]

Guo, P.; Wang, Z. B.; Heng, L. P.; Zhang, Y. Q.; Wang, X.; Jiang, L. Magnetocontrollable droplet and bubble manipulation on a stable amphibious slippery gel surface. Adv. Funct. Mater. 2019, 29, 1808717.

[39]

Lou, X. D.; Huang, Y.; Yang, X.; Zhu, H.; Heng, L. P.; Xia, F. External stimuli responsive liquid-infused surfaces switching between slippery and nonslippery states: Fabrications and applications. Adv. Funct. Mater. 2020, 30, 1901130.

[40]
Demus, D.; Goodby, J.; Gray, G. W.; Spiess, H. W.; Vill, V. Handbook of Liquid Crystals: Low Molecular Weight Liquid Crystals I; Wiley-VCH Verlag GmbH: New York, 1998.
[41]

Schadt, M. Liquid crystal materials and liquid crystal displays. Annu. Rev. Mater. Sci. 1997, 27, 305–379.

[42]

Bukusoglu, E.; Pantoja, M. B.; Mushenheim, P. C.; Wang, X. G.; Abbott, N. L. Design of responsive and active (soft) materials using liquid crystals. Annu. Rev. Chem. Biomol. Eng. 2016, 7, 163–196.

[43]

Kim, Y. K.; Wang, X. G.; Mondkar, P.; Bukusoglu, E.; Abbott, N. L. Self-reporting and self-regulating liquid crystals. Nature 2018, 557, 539–544.

[44]

Kim, I.; Ansari, M. A.; Mehmood, M. Q.; Kim, W. S.; Jang, J.; Zubair, M.; Kim, Y. K.; Rho, J. Stimuli-responsive dynamic metaholographic displays with designer liquid crystal modulators. Adv. Mater. 2020, 32, 2004664.

[45]

Turiv, T.; Koizumi, R.; Thijssen, K.; Genkin, M. M.; Yu, H.; Peng, C. H.; Wei, Q. H.; Yeomans, J. M.; Aranson, I. S.; Doostmohammadi, A. et al. Polar jets of swimming bacteria condensed by a patterned liquid crystal. Nat. Phys. 2020, 16, 481–487.

[46]

Xu, Y.; Rather, A. M.; Song, S.; Fang, J. C.; Dupont, R. L.; Kara, U. I.; Chang, Y.; Paulson, J. A.; Qin, R. J.; Bao, X. P. et al. Ultrasensitive and selective detection of SARS-CoV-2 using thermotropic liquid crystals and image-based machine learning. Cell Rep. Phys. Sci. 2020, 1, 100276.

[47]
Kléman, M.; Lavrentovich, O. D. Soft Matter Physics: An Introduction; Springer: New York, 2003,
[48]

Turiv, T.; Lazo, I.; Brodin, A.; Lev, B. I.; Reiffenrath, V.; Nazarenko, V. G.; Lavrentovich, O. D. Effect of collective molecular reorientations on brownian motion of colloids in nematic liquid crystal. Science 2013, 342, 1351–1354.

[49]

Xu, Y.; Rather, A. M.; Yao, Y. X.; Fang, J. C.; Mamtani, R. S.; Bennett, R. K. A.; Atta, R. G.; Adera, S.; Tkalec, U.; Wang, X. G. Liquid crystal-based open surface microfluidics manipulate liquid mobility and chemical composition on demand. Sci. Adv. 2021, 7, eabi7607.

[50]

Xu, Y.; Chang, Y.; Yao, Y. X.; Zhang, M.; Dupont, R. L.; Rather, A. M.; Bao, X. P.; Wang, X. G. Modularizable liquid-crystal-based open surfaces enable programmable chemical transport and feeding using liquid droplets. Adv. Mater. 2022, 34, 2108788.

[51]
K&J Magnetics, Inc [Online]. https://www.kjmagnetics.com/. (Accessed on Oct 29, 2022).
[52]

Gim, M. J.; Beller, D. A.; Yoon, D. K. Morphogenesis of liquid crystal topological defects during the nematic-smectic a phase transition. Nat. Commun. 2017, 8, 15453.

[53]

Honglawan, A.; Beller, D. A.; Cavallaro, M. Jr.; Kamien, R. D.; Stebe, K. J.; Yang, S. Topographically induced hierarchical assembly and geometrical transformation of focal conic domain arrays in smectic liquid crystals. Proc. Natl. Acad. Sci. USA 2013, 110, 34–39.

[54]

Yoon, D. K.; Deb, R.; Chen, D.; Körblova, E.; Shao, R. F.; Ishikawa, K.; Rao, N. V. S.; Walba, D. M.; Smalyukh, I. I.; Clark, N. A. Organization of the polarization splay modulated smectic liquid crystal phase by topographic confinement. Proc. Natl. Acad. Sci. USA 2010, 107, 21311–21315.

[55]

Zappone, B.; Meyer, C.; Bruno, L.; Lacaze, E. Periodic lattices of frustrated focal conic defect domains in smectic liquid crystal films. Soft Matter 2012, 8, 4318–4326.

[56]

Rather, A. M.; Xu, Y.; Chang, Y.; Dupont, R. L.; Borbora, A.; Kara, U. I.; Fang, J. C.; Mamtani, R.; Zhang, M.; Yao, Y. X. et al. Stimuli-responsive liquid-crystal-infused porous surfaces for manipulation of underwater gas bubble transport and adhesion. Adv. Mater. 2022, 34, 2110085.

[57]

Gao, N.; Geyer, F.; Pilat, D. W.; Wooh, S.; Vollmer, D.; Butt, H. J.; Berger, R. How drops start sliding over solid surfaces. Nat. Phys. 2018, 14, 191–196.

[58]

Mirsaidov, U. M.; Zheng, H. M.; Bhattacharya, D.; Casana, Y.; Matsudaira, P. Direct observation of stick-slip movements of water nanodroplets induced by an electron beam. Proc. Natl. Acad. Sci. USA 2012, 109, 7187–7190.

[59]

Sun, L. Y.; Bian, F. K.; Wang, Y.; Wang, Y. T.; Zhang, X. X.; Zhao, Y. J. Bioinspired programmable wettability arrays for droplets manipulation. Proc. Natl. Acad. Sci. USA 2020, 117, 4527–4532.

[60]

Wang, B. L.; Heng, L. P.; Jiang, L. Temperature-responsive anisotropic slippery surface for smart control of the droplet motion. ACS Appl. Mater. Interfaces 2018, 10, 7442–7450.

[61]

Kreder, M. J.; Daniel, D.; Tetreault, A.; Cao, Z. L.; Lemaire, B.; Timonen, J. V. I.; Aizenberg, J. Film dynamics and lubricant depletion by droplets moving on lubricated surfaces. Phys. Rev. X 2018, 8, 031053.

[62]

Daniel, D.; Timonen, J. V. I.; Li, R. P.; Velling, S. J.; Aizenberg, J. Oleoplaning droplets on lubricated surfaces. Nat. Phys. 2017, 13, 1020–1025.

[63]

Smith, J. D.; Dhiman, R.; Anand, S.; Reza-Garduno, E.; Cohen, R. E.; McKinley, G. H.; Varanasi, K. K. Droplet mobility on lubricant-impregnated surfaces. Soft Matter 2013, 9, 1772–1780.

[64]

Xu, W.; Choi, C. H. From sticky to slippery droplets: Dynamics of contact line depinning on superhydrophobic surfaces. Phys. Rev. Lett. 2012, 109, 024504.

[65]

Malinowski, R.; Parkin, I. P.; Volpe, G. Advances towards programmable droplet transport on solid surfaces and its applications. Chem. Soc. Rev. 2020, 49, 7879–7892.

[66]

Gao, L. C.; McCarthy, T. J. Contact angle hysteresis explained. Langmuir 2006, 22, 6234–6237.

[67]
De Gennes, P. G.; Brochard-Wyart, F.; Quéré, D. Capillarity and Wetting Phenomena Drops, Bubbles, Pearls, Waves; Springer: New York, 2004.
[68]

Daniel, D.; Timonen, J. V. I.; Li, R. P.; Velling, S. J.; Kreder, M. J.; Tetreault, A.; Aizenberg, J. Origins of extreme liquid repellency on structured, flat, and lubricated hydrophobic surfaces. Phys. Rev. Lett. 2018, 120, 244503.

[69]
Landau, L. ; Levich, B. Dragging of a liquid by a moving plate. In Dynamics of Curved Fronts. Pelcé, P., Ed.; Academic Press: Boston, 1988, 141–153.
[70]

Wong, T. S.; Kang, S. H.; Tang, S. K. Y.; Smythe, E. J.; Hatton, B. D.; Grinthal, A.; Aizenberg, J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 2011, 477, 443–447.

[71]
De Gennes, P. G.; Prost, J. The Physics of Liquid Crystals; Clarendon Press; Oxford University Press: Oxford, 1993.
[72]

Chmielewski, A. G. Viscosity coefficients of some nematic liquid crystals. Mol. Cryst. Liq. Cryst. 1986, 132, 339–352.

[73]

Mottram, N. J.; Hogan, S. J. Magnetic field-induced changes in molecular order in nematic liquid crystals. Continuum Mech. Thermodyn. 2002, 14, 281–295.

[74]

Concellón, A.; Zentner, C. A.; Swager, T. M. Dynamic complex liquid crystal emulsions. J. Am. Chem. Soc. 2019, 141, 18246–18255.

[75]
Kikuchi, H. Liquid crystalline blue phases. In Liquid Crystalline Functional Assemblies and Their Supramolecular Structures. Kato, T., Ed.; Springer: Berlin, 2008; pp 99–117.
[76]

Martínez-González, J. A.; Zhou, Y.; Rahimi, M.; Bukusoglu, E.; Abbott, N. L.; De Pablo, J. J. Blue-phase liquid crystal droplets. Proc. Natl. Acad. Sci. USA 2015, 112, 13195–13200.

[77]

Borshch, V.; Kim, Y. K.; Xiang, J.; Gao, M.; Jákli, A.; Panov, V. P.; Vij, J. K.; Imrie, C. T.; Tamba, M. G.; Mehl, G. H. et al. Nematic twist-bend phase with nanoscale modulation of molecular orientation. Nat. Commun. 2013, 4, 2635.

[78]

Chen, D.; Porada, J. H.; Hooper, J. B.; Klittnick, A.; Shen, Y. Q.; Tuchband, M. R.; Korblova, E.; Bedrov, D.; Walba, D. M.; Glaser, M. A. et al. Chiral heliconical ground state of nanoscale pitch in a nematic liquid crystal of achiral molecular dimers. Proc. Natl. Acad. Sci. USA 2013, 110, 15931–15936.

[79]

Lee, C.; Kim, H.; Nam, Y. Drop impact dynamics on oil-infused nanostructured surfaces. Langmuir 2014, 30, 8400–8407.

Nano Research
Pages 5098-5107
Cite this article:
Xu Y, Yao Y, Deng W, et al. Magnetocontrollable droplet mobility on liquid crystal-infused porous surfaces. Nano Research, 2023, 16(4): 5098-5107. https://doi.org/10.1007/s12274-022-5318-y
Topics:

4441

Views

6

Crossref

6

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 07 September 2022
Revised: 29 October 2022
Accepted: 13 November 2022
Published: 21 December 2022
© Tsinghua University Press 2022
Return