AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Crystal defect engineering of Bi2Te3 nanosheets by Ce doping for efficient electrocatalytic nitrogen reduction

Jianli Nan1,2Yongqin Liu1,2Daiyong Chao1,2Youxing Fang2Shaojun Dong1,2,3 ( )
College of Chemistry, Jilin University, Changchun 130012, China
Changchun State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
University of Science and Technology of China, Hefei 230026, China
Show Author Information

Graphical Abstract

Ce-doped bismuth telluride (Bi2Te3) nanosheets with tunable crystal defects were proved to be efficient electrocatalysts for nitrogen reduction reaction (NRR), among which Ce0.3-Bi2Te3 exhibited a high NH3 yield (78.2 μg·h−1·mgcat−1), a high Faradaic efficiency (19.3%), and excellent structural and electrochemical stability.

Abstract

Electrochemical nitrogen reduction reaction (NRR) is a promising method for the synthesis of ammonia (NH3). However, the electrochemical NRR process remains a great challenge in achieving a high NH3 yield rate and a high Faradaic efficiency (FE) due to the extremely strong N≡N bonds and the competing hydrogen evolution reaction (HER). Recently, bismuth telluride (Bi2Te3) with two-dimensional layered structure has been reported as a promising catalyst for N2 fixation. Herein, to further enhance its NRR activity, a general doping strategy is developed to introduce and modulate the crystal defects of Bi2Te3 nanosheets by adjusting the amount of Ce dopant (denoted as Cex-Bi2Te3, where x represents the designed molar ratio of Ce/Bi). Meanwhile, the crystal defects can be designed and controlled by means of ion substitution and charge compensation. At −0.60 V versus the reversible hydrogen electrode (RHE), Ce0.3-Bi2Te3 exhibits a high NH3 yield (78.2 μg·h−1·mgcat−1), a high FE (19.3%), and excellent structural and electrochemical stability. Its outstanding catalytic activity is attributed to the tunable crystal defects by Ce doping. This work not only contributes to enhancing the NRR activity of Bi2Te3 nanosheets, but also provides a reliable approach to prepare high-performance electrocatalysts by controlling the type and concentration of crystal defects for artificial N2 fixation.

Electronic Supplementary Material

Download File(s)
12274_2022_5319_MOESM1_ESM.pdf (11.2 MB)

References

[1]

Soloveichik, G. Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process. Nat. Catal. 2019, 2, 377–380.

[2]

Liang, J.; Liu, P. Y.; Li, Q. Y.; Li, T. S.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Alshehri, A. A. et al. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew. Chem., Int. Ed. 2022, 61, e202202087.

[3]

Deng, J.; Iñiguez, J. A.; Liu, C. Electrocatalytic nitrogen reduction at low temperature. Joule 2018, 2, 846–856.

[4]

Li, S. X.; Luo, Y. L.; Yue, L. C.; Li, T. S.; Wang, Y.; Liu, Q.; Cui, G. W.; Zhang, F.; Asiri, A. M.; Sun, X. P. An amorphous WC thin film enabled high-efficiency N2 reduction electrocatalysis under ambient conditions. Chem. Commun. 2021, 57, 7806–7809.

[5]

Chen, X. Z.; Li, N.; Kong, Z. Z.; Ong, W. J.; Zhao, X. J. Photocatalytic fixation of nitrogen to ammonia: State-of-the-art advancements and future prospects. Mater. Horiz. 2018, 5, 9–27.

[6]

Wen, G. L.; Liang, J.; Liu, Q.; Li, T. S.; An, X.; Zhang, F.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Kong, Q. Q. et al. Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray. Nano Res. 2022, 15, 972–977.

[7]

Cui, X. Y.; Tang, C.; Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 2018, 8, 1800369.

[8]

Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Jin, Z. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res. 2019, 12, 1229–1249.

[9]

Ma, B. Y.; Zhao, H. T.; Li, T. S.; Liu, Q.; Luo, Y. S.; Li, C. B.; Lu, S. Y.; Asiri, A. M.; Ma, D. W.; Sun, X. P. Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media. Nano Res. 2021, 14, 555–569.

[10]

Mehta, P.; Barboun, P.; Herrera, F. A.; Kim, J.; Rumbach, P.; Go, D. B.; Hicks, J. C.; Schneider, W. F. Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis. Nat. Catal. 2018, 1, 269–275.

[11]

Cao, N.; Chen, Z.; Zang, K. T.; Xu, J.; Zhong, J.; Luo, J.; Xu, X.; Zheng, G. F. Doping strain induced Bi-Ti3+ pairs for efficient N2 activation and electrocatalytic fixation. Nat. Commun. 2019, 10, 2877.

[12]

Liu, Q.; Xu, T.; Luo, Y. L.; Kong, Q. Q.; Li, T. S.; Lu, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Sun, X. P. Recent advances in strategies for highly selective electrocatalytic N2 reduction toward ambient NH3 synthesis. Curr. Opin. Electrochem. 2021, 29, 100766.

[13]

Xu, T.; Liang, J.; Wang, Y. Y.; Li, S. X.; Du, Z. B.; Li, T. S.; Liu, Q.; Luo, Y. L.; Zhang, F.; Shi, X. F. et al. Enhancing electrocatalytic N2-to-NH3 fixation by suppressing hydrogen evolution with alkylthiols modified Fe3P nanoarrays. Nano Res. 2022, 15, 1039–1046.

[14]

Zhao, Y. X.; Zhao, Y. F.; Shi, R.; Wang, B.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv. Mater. 2019, 31, 1806482.

[15]

Tao, H. C.; Choi, C.; Ding, L. X.; Jiang, Z.; Han, Z. S.; Jia, M. W.; Fan, Q.; Gao, Y. N.; Wang, H. H.; Robertson, A. W. et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 2019, 5, 204–214.

[16]

Lv, C. D.; Qian, Y. M.; Yan, C. S.; Ding, Y.; Liu, Y. Y.; Chen, G.; Yu, G. H. Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions. Angew. Chem., Int. Ed. 2018, 57, 10246–10250.

[17]

Liu, C. W.; Li, Q. Y.; Wu, C. Z.; Zhang, J.; Jin, Y. G.; MacFarlane, D. R.; Sun, C. H. Single-boron catalysts for nitrogen reduction reaction. J. Am. Chem. Soc. 2019, 141, 2884–2888.

[18]

Ling, C. Y.; Niu, X. H.; Li, Q.; Du, A. J.; Wang, J. L. Metal-free single atom catalyst for N2 fixation driven by visible light. J. Am. Chem. Soc. 2018, 140, 14161–14168.

[19]

Zhao, D. L.; Liang, J.; Li, J.; Zhang, L. C.; Dong, K.; Yue, L. C.; Luo, Y. S.; Ren, Y. C.; Liu, Q.; Hamdy, M. S. et al. A TiO2−x nanobelt array with oxygen vacancies: An efficient electrocatalyst toward nitrite conversion to ammonia. Chem. Commun. 2022, 58, 3669–3672.

[20]

Tong, Y. Y.; Guo, H. P.; Liu, D. L.; Yan, X.; Su, P. P.; Liang, J.; Zhou, S.; Liu, J.; Lu, G. Q.; Dou, S. X. Vacancy engineering of iron-doped W18O49 nanoreactors for low-barrier electrochemical nitrogen reduction. Angew. Chem., Int. Ed. 2020, 59, 7356–7361.

[21]

Zhang, L. L.; Cong, M. Y.; Ding, X.; Jin, Y.; Xu, F. F.; Wang, Y.; Chen, L.; Zhang, L. X. A Janus Fe-SnO2 catalyst that enables bifunctional electrochemical nitrogen fixation. Angew. Chem., Int. Ed. 2020, 59, 10888–10893.

[22]

Sun, T.; Zhang, G. Q.; Xu, D.; Lian, X.; Li, H. X.; Chen, W.; Su, C. L. Defect chemistry in 2D materials for electrocatalysis. Mater. Today Energy 2019, 12, 215–238.

[23]

Norris, D. J.; Efros, A. L.; Erwin, S. C. Doped nanocrystals. Science 2008, 319, 1776–1779.

[24]

Jo, W. J.; Jang, J. W.; Kong, K. J.; Kang, H. J.; Kim, J. Y.; Jun, H.; Parmar, K. P. S.; Lee, J. S. Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity. Angew. Chem., Int. Ed. 2012, 51, 3147–3151.

[25]

Lei, F. C.; Zhang, L.; Sun, Y. F.; Liang, L.; Liu, K. T.; Xu, J. Q.; Zhang, Q.; Pan, B. C.; Luo, Y.; Xie, Y. Atomic-layer-confined doping for atomic-level insights into visible-light water splitting. Angew. Chem., Int. Ed. 2015, 54, 9266–9270.

[26]

Sun, D. D.; Zhang, G. J.; Li, D.; Liu, S. T.; Jia, X. L.; Zhou, J. S. A layered Bi2Te3 nanoplates/graphene composite with high gravimetric and volumetric performance for Na-ion storage. Sustainable Energy Fuels 2019, 3, 3163–3171.

[27]

Min, Y.; Park, G.; Kim, B.; Giri, A.; Zeng, J.; Roh, J. W.; Kim, S. I.; Lee, K. H.; Jeong, U. Synthesis of multishell nanoplates by consecutive epitaxial growth of Bi2Se3 and Bi2Te3 nanoplates and enhanced thermoelectric properties. ACS Nano 2015, 9, 6843–6853.

[28]

Zhang, N.; Zheng, F. F.; Huang, B. L.; Ji, Y. J.; Shao, Q.; Li, Y. Y.; Xiao, X. H.; Huang, X. Q. Exploring Bi2Te3 nanoplates as versatile catalysts for electrochemical reduction of small molecules. Adv. Mater. 2020, 32, 1906477.

[29]

Liu, M.; Yin, S. L.; Ren, T. L.; Xu, Y.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. Two-dimensional heterojunction electrocatalyst: Au-Bi2Te3 nanosheets for electrochemical ammonia synthesis. ACS Appl. Mater. Interfaces 2021, 13, 47458–47464.

[30]

Wang, Q. T.; Cui, K.; Li, J.; Wu, Y. X.; Yang, Y. X.; Zhou, X. Z.; Ma, G. F.; Yang, Z. W.; Lei, Z. Q.; Ren, S. F. Iron ion irradiated Bi2Te3 nanosheets with defects and regulated hydrophilicity to enhance the hydrogen evolution reaction. Nanoscale 2020, 12, 16208–16214.

[31]

Qu, Q.; Liu, B.; Liang, J.; Li, H.; Wang, J. N.; Pan, D.; Sou, I. K. Expediting hydrogen evolution through topological surface states on Bi2Te3. ACS Catal. 2020, 10, 2656–2666.

[32]

Wu, T. W.; Zhu, X. J.; Xing, Z.; Mou, S. Y.; Li, C. B.; Qiao, Y. X.; Liu, Q.; Luo, Y. L.; Shi, X. F.; Zhang, Y. N. et al. Greatly improving electrochemical N2 reduction over TiO2 nanoparticles by iron doping. Angew. Chem., Int. Ed. 2019, 58, 18449–18453.

[33]

Xie, H. T.; Wang, H. B.; Geng, Q.; Xing, Z.; Wang, W.; Chen, J. Y.; Ji, L.; Chang, L.; Wang, Z. M.; Mao, J. Oxygen vacancies of Cr-doped CeO2 nanorods that efficiently enhance the performance of electrocatalytic N2 fixation to NH3 under ambient conditions. Inorg. Chem. 2019, 58, 5423–5427.

[34]

Xu, B.; Xia, L.; Zhou, F. L.; Zhao, R. H.; Chen, H. Y.; Wang, T.; Zhou, Q.; Liu, Q.; Cui, G. W.; Xiong, X. L. et al. Enhancing electrocatalytic N2 reduction to NH3 by CeO2 nanorod with oxygen vacancies. ACS Sustainable Chem. Eng. 2019, 7, 2889–2893.

[35]

Yang, X. T.; Ma, Y. F.; Liu, Y.; Wang, K. K.; Wang, Y. Q.; Liu, M.; Qiu, X. Q.; Li, W. Z.; Li, J. Defect-induced Ce-doped Bi2WO6 for efficient electrocatalytic N2 reduction. ACS Appl. Mater. Interfaces 2021, 13, 19864–19872.

[36]

Xu, Y. B.; Ren, Z. M.; Ren, W. L.; Cao, G. H.; Deng, K.; Zhong, Y. B. Hydrothermal synthesis of single-crystalline Bi2Te3 nanoplates. Mater. Lett. 2008, 62, 4273–4276.

[37]

Musah, J. D.; Guo, C.; Novitskii, A.; Serhiienko, I.; Adesina, A. E.; Khovaylo, V.; Wu, C. M. L.; Zapien, J. A.; Roy, V. A. L. Ultralow thermal conductivity in dual-doped n-type Bi2Te3 material for enhanced thermoelectric properties. Adv. Electron. Mater. 2021, 7, 2000910.

[38]

Shahil, K. M. F.; Hossain, M. Z.; Teweldebrhan, D.; Balandin, A. A. Crystal symmetry breaking in few-quintuple Bi2Te3 films: Applications in nanometrology of topological insulators. Appl. Phys. Lett. 2010, 96, 153103.

[39]

Li, D.; Qin, X. Y.; Liu, Y. F.; Wang, N. N.; Song, C. J.; Sun, R. R. Improved thermoelectric properties for solution grown Bi2Te3−xSex nanoplatelet composites. RSC Adv. 2013, 3, 2632–2638.

[40]

Qi, X.; Ma, W. G.; Zhang, X.; Zhang, C. Raman characterization and transport properties of morphology-dependent two-dimensional Bi2Te3 nanofilms. Appl. Surf. Sci. 2018, 457, 41–48.

[41]

Liu, P. X.; Jing, P.; Xu, X.; Liu, B. C.; Zhang, J. Structural reconstruction of Ce-MOF with active sites for efficient electrocatalytic N2 reduction. ACS Appl. Energy Mater. 2021, 4, 12128–12136.

[42]

Zhang, M.; Zhang, L.; Wang, H.; Bian, Z. Y. Hybrid electrocatalytic ozonation treatment of high-salinity organic wastewater using Ni-Ce/OMC particle electrodes. Sci. Total Environ. 2020, 724, 138170.

[43]

Dai, Z.; Qin, F.; Zhao, H. P.; Ding, J.; Liu, Y. L.; Chen, R. Crystal defect engineering of aurivillius Bi2MoO6 by Ce doping for increased reactive species production in photocatalysis. ACS Catal. 2016, 6, 3180–3192.

[44]

Liu, P.; Li, J. W.; Yan, J. Y.; Song, W. B. Defect-rich Fe-doped NiS/MoS2 heterostructured ultrathin nanosheets for efficient overall water splitting. Phys. Chem. Chem. Phys. 2022, 24, 8344–8350.

[45]

Tao, L.; Duan, X. D.; Wang, C.; Duan, X. F.; Wang, S. Y. Plasma-engineered MoS2 thin-film as an efficient electrocatalyst for hydrogen evolution reaction. Chem. Commun. 2015, 51, 7470–7473.

[46]

Huang, W. T.; Zhou, Q. W.; Su, S. Q.; Li, J.; Lu, X. B.; Gao, X. S.; Wang, X.; Jin, M. L.; Zhou, G. F.; Zhang, Z. et al. Ion beam defect engineering on ReS2/Si photocathode with significantly enhanced hydrogen evolution reaction. Adv. Mater. Interfaces 2019, 6, 1801663.

[47]

Sun, Y. J.; Liang, Y. X.; Luo, M. C.; Lv, F.; Qin, Y. N.; Wang, L.; Xu, C.; Fu, E. G.; Guo, S. J. Defects and interfaces on PtPb nanoplates boost fuel cell electrocatalysis. Small 2018, 14, 1702259.

[48]

Geng, Z.; Liu, Y.; Kong, X.; Li, P.; Li, K.; Liu, Z.; Du, J.; Shu, M.; Si, R.; Zeng, J. Achieving a record-high yield rate of 120.9 μg NH3·mgcat.−1·h−1 for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater. 2018, 30, 1803498.

[49]

Wang, J.; Huang, B. L.; Ji, Y. J.; Sun, M. Z.; Wu, T.; Yin, R. G.; Zhu, X.; Li, Y. Y.; Shao, Q.; Huang, X. Q. A general strategy to glassy M-Te (M = Ru, Rh, Ir) porous nanorods for efficient electrochemical N2 fixation. Adv. Mater. 2020, 32, 1907112.

[50]

Chen, C.; Zhu, X. R.; Wen, X. J.; Zhou, Y. Y.; Zhou, L.; Li, H.; Tao, L.; Li, Q. L.; Du, S. Q.; Liu, T. T. et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 2020, 12, 717–724.

[51]

Liu, Y. Q.; Huang, L.; Fang, Y. X.; Zhu, X. Y.; Nan, J. L.; Dong, S. J. Interfacial electron regulation of Rh atomic layer-decorated SnO2 heterostructures for enhancing electrocatalytic nitrogen reduction. ACS Appl. Mater. Interfaces 2022, 14, 12304–12313.

[52]

Zhao, Z. Q.; Park, J.; Choi, C.; Hong, S.; Hui, X. C.; Zhang, H.; Benedict Lo, T. W.; Robertson, A. W.; Lv, Z. X.; Jung, Y. et al. Engineering vacancy and hydrophobicity of two-dimensional TaTe2 for efficient and stable electrocatalytic N2 reduction. Innovation 2022, 3, 100190.

[53]

Liu, Q.; Li, X. L.; He, Q.; Khalil, A.; Liu, D. B.; Xiang, T.; Wu, X. J.; Song, L. Gram-scale aqueous synthesis of stable few-layered 1T-MoS2: Applications for visible-light-driven photocatalytic hydrogen evolution. Small 2015, 11, 5556–5564.

[54]

Wang, D. Z.; Zhang, X. Y.; Bao, S. Y.; Zhang, Z. T.; Fei, H.; Wu, Z. Z. Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution. J. Mater. Chem. A 2017, 5, 2681–2688.

[55]

Wang, J. Y.; Tang, J.; Guo, T.; Zhang, S. H.; Xia, W.; Tan, H. B.; Bando, Y.; Wang, X.; Yamauchi, Y. C3N4-digested 3D construction of hierarchical metallic phase MoS2 nanostructures. J. Mater. Chem. A 2019, 7, 18388–18396.

[56]

Plecháček, T.; Navrátil, J.; Horák, J.; Lošt’ák, P. Defect structure of Pb-doped Bi2Te3 single crystals. Philos. Mag. 2004, 84, 2217–2228.

[57]

Kim, Y. H.; Kim, Y.; Kim, H. S.; Choi, S. M.; Kim, S. I.; Lee, K. H. Concentration-dependent excess Cu doping behavior and influence on thermoelectric properties in Bi2Te3. Int. J. Energy Res. 2022, 46, 3707–3713.

[58]

Zhao, Y. M.; Rabouw, F. T.; van Puffelen, T.; van Walree, C. A.; Gamelin, D. R.; de Mello Donegá, C.; Meijerink, A. Lanthanide-doped CaS and SrS luminescent nanocrystals: A single-source precursor approach for doping. J. Am. Chem. Soc. 2014, 136, 16533–16543.

[59]

Kiriya, D.; Tosun, M.; Zhao, P. D.; Kang, J. S.; Javey, A. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 2014, 136, 7853–7856.

[60]

Bi, J. H.; Ying, H.; Xu, H.; Zhao, X. Y.; Du, X. Y.; Hao, J. C.; Li, Z. H. Phosphorus vacancy-engineered Ce-doped CoP nanosheets for the electrocatalytic oxidation of 5-hydroxymethylfurfural. Chem. Commun. 2022, 58, 7817–7820.

[61]

Yan, G. Y.; Wu, T.; Xing, S. M.; Chen, F.; Zhao, B. W.; Gao, W. J. Ultrathin Ce-doped La2O3 nanofilm electrocatalysts for efficient oxygen evolution reactions. Nanotechnology 2022, 33, 245405.

Nano Research
Pages 6544-6551
Cite this article:
Nan J, Liu Y, Chao D, et al. Crystal defect engineering of Bi2Te3 nanosheets by Ce doping for efficient electrocatalytic nitrogen reduction. Nano Research, 2023, 16(5): 6544-6551. https://doi.org/10.1007/s12274-022-5319-x
Topics:

4990

Views

19

Crossref

20

Web of Science

21

Scopus

0

CSCD

Altmetrics

Received: 21 September 2022
Revised: 09 November 2022
Accepted: 14 November 2022
Published: 15 February 2023
© Tsinghua University Press 2022
Return