AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Spontaneous, scalable, and self-similar superhydrophobic coatings for all-weather deicing

Yaohui Cheng1Yirong Wang1,2Xin Zhang1,2Jinming Zhang1( )Zhiyuan He3( )Jianjun Wang1,2Jun Zhang1,2( )
CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
Beijing Institute of Technology, Beijing 100081, China
Show Author Information

Graphical Abstract

Superhydrophobic coating is easy scalable with outstanding photo-thermal and Joule-heating performance. Thus, it could achieve all-weather anti-icing for wind power generators under sunlight and low voltage conditions.

Abstract

Herein, we proposed and demonstrated a facile and scalable strategy to fabricate multifunctional self-similar superhydrophobic coatings. Firstly, a hydrophobic cationic cellulose derivative containing imidazolium cation was synthesized by a controllable derivatization. It could effectively disperse one-dimensional (1D) multi-walled carbon nanotubes (MWCNT), because the imidazolium cations formed cation–π interactions with MWCNT. Further, the synergy effect of the cationic cellulose derivative and MWCNT dispersed two-dimensional (2D) reduced graphene oxide (rGO) to obtain a three-components nano-dispersion. Finally, via a simple spaying process, a superhydrophobic coating with self-similar micro-nano structures spontaneously formed from inside to outside, owing to the various nanostructures with different shapes and sizes in the dispersion and the adhesive effect of the cellulose derivative. This superhydrophobic coating was easy to scale, and exhibited superior stability owing to the renewal micro-nano structures. It retained the superhydrophobicity even if it was treated by rubbing for 1500 times. Moreover, it had outstanding photo-thermal and Joule-heating performance, because of the strong solar absorption and high electrical conductivity of MWCNT and rGO. It provided both passive anti-icing and active deicing effects. Thus, it could achieve all-weather anti-icing for wind power generators under sunlight and low voltage conditions. Such facile preparation method and multifunctional renewable superhydrophobic coating hold great application prospects.

Electronic Supplementary Material

Video
12274_2022_5320_MOESM2_ESM.mp4
12274_2022_5320_MOESM3_ESM.mp4
12274_2022_5320_MOESM4_ESM.mp4
12274_2022_5320_MOESM5_ESM.mp4
Download File(s)
12274_2022_5320_MOESM1_ESM.pdf (1.2 MB)

References

[1]

Feng, L.; Li, S. H.; Li, Y. S.; Li, H. J.; Zhang, L. J.; Zhai, J.; Song, Y. L.; Liu, B. Q.; Jiang, L.; Zhu, D. B. Super-hydrophobic surfaces: From natural to artificial. Adv. Mater. 2002, 14, 1857–1860.

[2]

Lv, J. Y.; Song, Y. L.; Jiang, L.; Wang, J. J. Bio-inspired strategies for anti-icing. ACS Nano 2014, 8, 3152–3169.

[3]

Wang, L.; Gong, Q. H.; Zhan, S. H.; Jiang, L.; Zheng, Y. M. Robust anti-icing performance of a flexible superhydrophobic surface. Adv. Mater. 2016, 28, 7729–7735.

[4]

Mouterde, T.; Lehoucq, G.; Xavier, S.; Checco, A.; Black, C. T.; Rahman, A.; Midavaine, T.; Clanet, C.; Quéré, D. Antifogging abilities of model nanotextures. Nat. Mater. 2017, 16, 658–663.

[5]

Yoon, J.; Ryu, M.; Kim, H.; Ahn, G. N.; Yim, S. J.; Kim, D. P.; Lee, H. Wet-style superhydrophobic antifogging coatings for optical sensors. Adv. Mater. 2020, 32, 2002710.

[6]

Zang, D. M.; Zhu, R. W.; Zhang, W.; Yu, X. Q.; Lin, L.; Guo, X. L.; Liu, M. J.; Jiang, L. Corrosion-resistant superhydrophobic coatings on Mg alloy surfaces inspired by lotus seedpod. Adv. Funct. Mater. 2017, 27, 1605446.

[7]

Hu, H. B.; Wen, J.; Bao, L. Y.; Jia, L. B.; Song, D.; Song, B. W.; Pan, G.; Scaraggi, M.; Dini, D.; Xue, Q. J. et al. Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips. Sci. Adv. 2017, 3, e160328.

[8]

Zhang, L. S.; Zhou, A. G.; Sun, B. R.; Chen, K. S.; Yu, H. Z. Functional and versatile superhydrophobic coatings via stoichiometric silanization. Nat. Commun. 2021, 12, 982.

[9]

Song, J. L.; Gao, M. Q.; Zhao, C. L.; Lu, Y.; Huang, L.; Liu, X.; Carmalt, C. J.; Deng, X.; Parkin, I. P. Large-area fabrication of droplet pancake bouncing surface and control of bouncing state. ACS Nano 2017, 11, 9259–9267.

[10]

Tian, X. C.; Shaw, S.; Lind, K. R.; Cademartiri, L. Thermal processing of silicones for green, scalable, and healable superhydrophobic coatings. Adv. Mater. 2016, 28, 3677–3682.

[11]

Tian, X. L.; Verho, T.; Ras, R. H. A. Moving superhydrophobic surfaces toward real-world applications. Science 2016, 352, 142–143.

[12]

Zhang, W. L.; Wang, D. H.; Sun, Z. N.; Song, J. N.; Deng, X. Robust superhydrophobicity: Mechanisms and strategies. Chem. Soc. Rev. 2021, 50, 4031–4061.

[13]

Sun, M.; Boo, C.; Shi, W. B.; Rolf, J.; Shaulsky, E.; Cheng, W.; Plata, D. L.; Qu, J. H.; Elimelech, M. Engineering carbon nanotube forest superstructure for robust thermal desalination membranes. Adv. Funct. Mater. 2019, 29, 1903125.

[14]

De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539.

[15]

Ju, J.; Yao, X.; Hou, X.; Liu, Q. H.; Zhang, Y. S.; Khademhosseini, A. A highly stretchable and robust non-fluorinated superhydrophobic surface. J. Mater. Chem. A 2017, 5, 16273–16280.

[16]

Zhou, H.; Wang, H. X.; Niu, H. T.; Gestos, A.; Wang, X. G.; Lin, T. Fluoroalkyl silane modified silicone rubber/nanoparticle composite: A super durable, robust superhydrophobic fabric coating. Adv. Mater. 2012, 24, 2409–2412.

[17]

Yang, C.; Li, Z. W.; Huang, Y.; Wang, K. Y.; Long, Y. Z.; Guo, Z. L.; Li, X. Y.; Wu, H. Continuous roll-to-roll production of carbon nanoparticles from candle soot. Nano Lett. 2021, 21, 3198–3204.

[18]

Deng, X.; Mammen, L.; Butt, H. J.; Vollmer, D. Candle soot as a template for a transparent robust superamphiphobic coating. Science 2012, 335, 67–70.

[19]

Peng, C. Y.; Chen, Z. Y.; Tiwari, M. K. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance. Nat. Mater. 2018, 17, 355–360.

[20]

Li, Y.; Chen, S. S.; Wu, M. C.; Sun, J. Q. All spraying processes for the fabrication of robust, self-healing, superhydrophobic coatings. Adv. Mater. 2014, 26, 3344–3348.

[21]

Pan, S. J.; Guo, R.; Björnmalm, M.; Richardson, J. J.; Li, L.; Peng, C.; Bertleff-Zieschang, N.; Xu, W. J.; Jiang, J. H.; Caruso, F. Coatings super-repellent to ultralow surface tension liquids. Nat. Mater. 2018, 17, 1040–1047.

[22]

Wang, D. H.; Sun, Q. Q.; Hokkanen, M. J.; Zhang, C. L.; Lin, F. Y.; Liu, Q.; Zhu, S. P.; Zhou, T. F.; Chang, Q.; He, B. et al. Design of robust superhydrophobic surfaces. Nature 2020, 582, 55–59.

[23]

Teisala, H.; Geyer, F.; Haapanen, J.; Juuti, P.; Mäkelä, J. M.; Vollmer, D.; Butt, H. J. Ultrafast processing of hierarchical nanotexture for a transparent superamphiphobic coating with extremely low roll-off angle and high impalement pressure. Adv. Mater. 2018, 30, 1706529.

[24]

Qing, Y. Q.; Shi, S. L.; Lv, C. J.; Zheng, Q. S. Microskeleton-nanofiller composite with mechanical super-robust superhydrophobicity against abrasion and impact. Adv. Funct. Mater. 2020, 30, 1910665.

[25]

Kreder, M. J.; Alvarenga, J.; Kim, P.; Aizenberg, J. Design of anti-icing surfaces: Smooth, textured or slippery? Nat. Rev. Mater. 2016, 1, 15003.

[26]

Liu, Y. B.; Wu, Y.; Liu, S. J.; Zhou, F. Material strategies for ice accretion prevention and easy removal. ACS Mater. Lett. 2022, 4, 246–262.

[27]

Golovin, K.; Tuteja, A. A predictive framework for the design and fabrication of icephobic polymers. Sci. Adv. 2017, 3, e1701617.

[28]

He, Z. Y.; Wu, C. Y.; Hua, M. T.; Wu, S. W.; Wu, D.; Zhu, X. Y.; Wang, J. J.; He, X. M. Bioinspired multifunctional anti-icing hydrogel. Matter 2020, 2, 723–734.

[29]

Liu, Z. Q.; He, Z. Y.; Lv, J. Y.; Jin, Y. K.; Wu, S. W.; Liu, G. M.; Zhou, F.; Wang, J. J. Ion-specific ice propagation behavior on polyelectrolyte brush surfaces. RSC Adv. 2017, 7, 840–844.

[30]

Koshio, K.; Waku, T.; Hagiwara, Y. Ice-phobic glass-substrate surfaces coated with polypeptides inspired by antifreeze protein. Int. J. Refrig. 2020, 114, 201–209.

[31]

Wang, F.; Xiao, S. B.; Zhuo, Y. Z.; Ding, W. W.; He, J. Y.; Zhang, Z. L. Liquid layer generators for excellent icephobicity at extremely low temperatures. Mater. Horizons 2019, 6, 2063–2072.

[32]

Chen, J.; Dou, R. M.; Cui, D. P.; Zhang, Q. L.; Zhang, Y. F.; Xu, F. J.; Zhou, X.; Wang, J. J.; Song, Y. L.; Jiang, L. Robust prototypical anti-icing coatings with a self-lubricating liquid water layer between ice and substrate. ACS Appl. Mater. Interfaces 2013, 5, 4026–4030.

[33]

Wang, L. Z.; Tian, Z.; Jiang, G. C.; Luo, X.; Chen, C. H.; Hu, X. Y.; Zhang, H. J.; Zhong, M. L. Spontaneous dewetting transitions of droplets during icing & melting cycle. Nat. Commun. 2022, 13, 378.

[34]

Li, J.; Jiao, W. C.; Wang, Y. C.; Yin, Y. X.; He, X. D. Spraying pressure-tuning for the fabrication of the tunable adhesion superhydrophobic coatings between Lotus effect and Petal effect and their anti-icing performance. Chem. Eng. J. 2022, 434, 134710.

[35]

Chen, J.; Liu, J.; He, M.; Li, K. Y.; Cui, D. P.; Zhang, Q. L.; Zeng, X. P.; Zhang, Y. F.; Wang, J. J.; Song, Y. L. Superhydrophobic surfaces cannot reduce ice adhesion. Appl. Phys. Lett. 2012, 101, 3.

[36]

Peppou-Chapman, S.; Hong, J. K.; Waterhouse, A.; Neto, C. Life and death of liquid-infused surfaces: A review on the choice, analysis and fate of the infused liquid layer. Chem. Soc. Rev. 2020, 49, 3688–3715.

[37]

Gou, T.; Liu, T.; Su, Y. P.; Li, J.; Guo, Y. Y.; Huang, J. B.; Zhang, H. D.; Li, Y.; Zhang, Z. Y.; Ma, Y. J. et al. Bio-inspired inclined nanohair arrays with tunable mechanical properties for effective directional condensed microdroplets self-jumping. Chem. Eng. J. 2022, 427, 130887.

[38]

Wang, R.; Wu, F. F.; Yu, F. F.; Zhu, J.; Gao, X. F.; Jiang, L. Anti-vapor-penetration and condensate microdrop self-transport of superhydrophobic oblique nanowire surface under high subcooling. Nano Res. 2021, 14, 1429–1434.

[39]

Wang, R.; Wu, F. F.; Xing, D. D.; Yu, F. F.; Gao, X. F. Density maximization of one-step electrodeposited copper nanocones and dropwise condensation heat-transfer performance evaluation. ACS Appl. Mater. Interfaces 2020, 12, 24512–24520.

[40]

Gong, X. J.; Gao, X. F.; Jiang, L. Recent progress in bionic condensate microdrop self-propelling surfaces. Adv. Mater. 2017, 29, 1703002.

[41]

Tian, J.; Zhu, J.; Guo, H. Y.; Li, J.; Feng, X. Q.; Gao, X. F. Efficient self-propelling of small-scale condensed microdrops by closely packed zno nanoneedles. J. Phys. Chem. Lett. 2014, 5, 2084–2088.

[42]

Xu, Q.; Li, J.; Tian, J.; Zhu, J.; Gao, X. F. Energy-effective frost-free coatings based on superhydrophobic aligned nanocones. ACS Appl. Mater. Interfaces 2014, 6, 8976–8980.

[43]

Li, J.; Luo, Y. T.; Zhu, J.; Li, H.; Gao, X. F. Subcooled-water nonstickiness of condensate microdrop self-propelling nanosurfaces. ACS Appl. Mater. Interfaces 2015, 7, 26391–26395.

[44]

Zhang, H.; Guo, S. W.; Fu, S. Y.; Zhao, Y. A near-infrared light-responsive hybrid hydrogel based on UCST triblock copolymer and gold nanorods. Polymers (Basel) 2017, 9, 238.

[45]

Yang, X. Y.; Zhang, X. Y.; Liu, Z. F.; Ma, Y. F.; Huang, Y.; Chen, Y. S. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J. Phys. Chem. C 2008, 112, 17554–17558.

[46]

Xu, Y. X.; Bai, H.; Lu, G. W.; Li, C.; Shi, G. Q. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 2008, 130, 5856–5857.

Nano Research
Pages 7171-7179
Cite this article:
Cheng Y, Wang Y, Zhang X, et al. Spontaneous, scalable, and self-similar superhydrophobic coatings for all-weather deicing. Nano Research, 2023, 16(5): 7171-7179. https://doi.org/10.1007/s12274-022-5320-4
Topics:

4780

Views

24

Crossref

25

Web of Science

27

Scopus

1

CSCD

Altmetrics

Received: 23 September 2022
Revised: 01 November 2022
Accepted: 13 November 2022
Published: 15 February 2023
© Tsinghua University Press 2022
Return