AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Modular divergent creation of dual-cocatalysts integrated semiconducting sulfide nanotriads for enhanced photocatalytic hydrogen evolution

Chao Gu1,§Yu-Qing Liu2,§Guo-Qiang Liu1,§Hou-Ming Xu2Yi Li1Xiao-Long Zhang1Liang Wu1Lei Shi1Shi-Kui Han2( )Min-Rui Gao1Shu-Hong Yu1( )
Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, China
Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China

§ Chao Gu, Yu-Qing Liu, and Guo-Qiang Liu contributed equally to this work.

Show Author Information

Graphical Abstract

We report a modular divergent synthetic strategy for creating unique semiconducting sulfide heteronanostructures (HNs), denoted as PdxS(ox)−CdS−MoS2(red) (ox: oxidation and red: reduction). The integrated architectures demonstrate superior photocatalytic hydrogen evolution performance due to their favorable band alignments for continuous charge separation, together with dual-cocatalytically active sites for redox reactions, respectively.

Abstract

Heteronanostructures (HNs) with precise components and interfaces are important for many applications, such as designing efficient and robust solar-to-fuel catalysts via integrating specific semiconductors with favorable band alignments. However, rationally endowing such features with rigorous framework control remains a synthetic bottleneck. Herein, we report a modular divergent creation of dual-cocatalysts integrated semiconducting sulfide nanotriads (NTds), comprising both isolated PdxS oxidation (ox) and MoS2 reduction (red) domains within each single CdS counterpart, which exhibit superior photocatalytic activity and stability for hydrogen evolution reaction (HER). The stepwise constructed PdxS(ox)−CdS−MoS2(red) NTds possess dual-interfaces facilitating continuous charge separation and segregated active sites accelerating redox reactions, respectively, achieving the HER rate up to 9 mmol·h−1·g−1, which is about 60 times higher than that of bare CdS, and show no evidence of deactivation after long-term cycling. This design principle and transformation protocol provide predictable retrosynthetic pathways to HNs with increased degree of complexity and more elaborate functionalities that are otherwise inaccessible.

Electronic Supplementary Material

Download File(s)
12274_2022_5324_MOESM1_ESM.pdf (2 MB)

References

[1]

Costi, R.; Saunders, A. E.; Banin, U. Colloidal hybrid nanostructures: A new type of functional materials. Angew. Chem., Int. Ed. 2010, 49, 4878–4897.

[2]

Dutta, S. K.; Mehetor, S. K.; Pradhan, N. Metal semiconductor heterostructures for photocatalytic conversion of light energy. J. Phys. Chem. Lett. 2015, 6, 936–944.

[3]

Liu, M. X.; Liu, Y.; Gu, B. B.; Wei, X. B.; Xu, G. X.; Wang, X. M.; Swihart, M. T.; Yong, K. T. Recent advances in copper sulphide-based nanoheterostructures. Chem. Soc. Rev. 2019, 48, 4950–4965.

[4]

Ha, M. J.; Kim, J. H.; You, M.; Li, Q.; Fan, C. H.; Nam, J. M. Multicomponent plasmonic nanoparticles: From heterostructured nanoparticles to colloidal composite nanostructures. Chem. Rev. 2019, 119, 12208–12278.

[5]

Lu, H. J.; Tournet, J.; Dastafkan, K.; Liu, Y.; Ng, Y. H.; Karuturi, S. K.; Zhao, C.; Yin, Z. Y. Noble-metal-free multicomponent nanointegration for sustainable energy conversion. Chem. Rev. 2021, 121, 10271–10366.

[6]

Sun, Y. G.; Foley, J. J.; Peng, S.; Li, Z.; Gray, S. K. Interfaced metal heterodimers in the quantum size regime. Nano Lett. 2013, 13, 3958–3964.

[7]

Buck, M. R.; Bondi, J. F.; Schaak, R. E. A total-synthesis framework for the construction of high-order colloidal hybrid nanoparticles. Nat. Chem. 2012, 4, 37–44.

[8]

Ding, X. G.; Liow, C. H.; Zhang, M. X.; Huang, R. J.; Li, C. Y.; Shen, H.; Liu, M. Y.; Zou, Y.; Gao, N.; Zhang, Z. J. et al. Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J. Am. Chem. Soc. 2014, 136, 15684–15693.

[9]

Zhuang, T. T.; Liu, Y.; Sun, M.; Jiang, S. L.; Zhang, M. W.; Wang, X. C.; Zhang, Q.; Jiang, J.; Yu, S. H. A unique ternary semiconductor-(semiconductor/metal) nano-architecture for efficient photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2015, 54, 11495–11500.

[10]

Han, S. K.; Gong, M.; Yao, H. B.; Wang, Z. M.; Yu, S. H. One-pot controlled synthesis of hexagonal-prismatic Cu1.94S-ZnS, Cu1.94S-ZnS-Cu1.94S, and Cu1.94S-ZnS-Cu1.94S-ZnS-Cu1.94S heteronanostructures. Angew. Chem., Int. Ed. 2012, 51, 6365–6368.

[11]

Han, S. K.; Gu, C.; Zhao, S. T.; Xu, S.; Gong, M.; Li, Z. Y.; Yu, S. H. Precursor triggering synthesis of self-coupled sulfide polymorphs with enhanced photoelectrochemical properties. J. Am. Chem. Soc. 2016, 138, 12913–12919.

[12]

Han, S. K.; Gu, C.; Gong, M.; Yu, S. H. A trialkylphosphine-driven chemical transformation route to Ag- and Bi-based chalcogenides. J. Am. Chem. Soc. 2015, 137, 5390–5396.

[13]

Hill, L. J.; Bull, M. M.; Sung, Y.; Simmonds, A. G.; Dirlam, P. T.; Richey, N. E.; DeRosa, S. E.; Shim, I. B.; Guin, D.; Costanzo, P. J. et al. Directing the deposition of ferromagnetic cobalt onto Pt-tipped CdSe@CdS nanorods: Synthetic and mechanistic insights. ACS Nano 2012, 6, 8632–8645.

[14]

Zhang, J. T.; Tang, Y.; Lee, K.; Ouyang, M. Nonepitaxial growth of hybrid core–shell nanostructures with large lattice mismatches. Science 2010, 327, 1634–1638.

[15]

Amirav, L.; Oba, F.; Aloni, S.; Alivisatos, A. P. Modular synthesis of a dual metal-dual semiconductor nano-heterostructure. Angew. Chem., Int. Ed. 2015, 54, 7007–7011.

[16]

Fenton, J. L.; Steimle, B. C.; Schaak, R. E. Tunable intraparticle frameworks for creating complex heterostructured nanoparticle libraries. Science 2018, 360, 513–517.

[17]

Regulacio, M. D.; Han, M. Y. Multinary I-III-VI2 and I2-II-IV-VI4 semiconductor nanostructures for photocatalytic applications. Acc. Chem. Res. 2016, 49, 511–519.

[18]

Stroyuk, O.; Raevskaya, A.; Gaponik, N. Solar light harvesting with multinary metal chalcogenide nanocrystals. Chem. Soc. Rev. 2018, 47, 5354–5422.

[19]

Chandrasekaran, S.; Yao, L.; Deng, L. B.; Bowen, C.; Zhang, Y.; Chen, S. M.; Lin, Z. Q.; Peng, F.; Zhang, P. X. Recent advances in metal sulfides: From controlled fabrication to electrocatalytic, photocatalytic, and photoelectrochemical water splitting and beyond. Chem. Soc. Rev. 2019, 48, 4178–4280.

[20]

Cheng, L.; Xiang, Q. J.; Liao, Y. L.; Zhang, H. W. CdS-Based photocatalysts. Energy Environ. Sci. 2018, 11, 1362–1391.

[21]

Cui, J. B.; Jiang, R.; Lu, W. L.; Xu, S. Y.; Wang, L. Y. Plasmon-enhanced photoelectrical hydrogen evolution on monolayer MoS2 decorated Cu1.75S-Au nanocrystals. Small 2017, 13, 1602235.

[22]

Zhuang, T. T.; Liu, Y.; Li, Y.; Zhao, Y.; Wu, L.; Jiang, J.; Yu, S. H. Integration of semiconducting sulfides for full-spectrum solar energy absorption and efficient charge separation. Angew. Chem., Int. Ed. 2016, 55, 6396–6400.

[23]

Qiu, B. C.; Cai, L. J.; Zhang, N.; Tao, X. M.; Chai, Y. A ternary dumbbell structure with spatially separated catalytic sites for photocatalytic overall water splitting. Adv. Sci. 2020, 7, 1903568.

[24]

Ou-Yang, H.; Xu, H. M.; Zhang, X. L.; Liu, Y. Q.; He, Y. Q.; Shi, L.; Gu, C.; Han, S. K. Selective-epitaxial hybrid of tripartite semiconducting sulfides for enhanced solar-to-hydrogen conversion. Small 2022, 18, 2202109.

[25]

Yan, H. J.; Yang, J. H.; Ma, G. J.; Wu, G. P.; Zong, X.; Lei, Z. B.; Shi, J. Y.; Li, C. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. J. Catal. 2009, 266, 165–168.

[26]

Shemesh, Y.; Macdonald, J. E.; Menagen, G.; Banin, U. Synthesis and photocatalytic properties of a family of CdS-PdX hybrid nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 1185–1189.

[27]

Yang, J. H.; Yan, H. J.; Wang, X. L.; Wen, F. Y.; Wang, Z. J.; Fan, D. Y.; Shi, J. Y.; Li, C. Roles of cocatalysts in Pt-PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production. J. Catal. 2012, 290, 151–157.

[28]

Liu, G. N.; Kolodziej, C.; Jin, R.; Qi, S. P.; Lou, Y. B.; Chen, J. X.; Jiang, D. C.; Zhao, Y. X.; Burda, C. MoS2-stratified CdS-Cu2−xS core–shell nanorods for highly efficient photocatalytic hydrogen production. ACS Nano 2020, 14, 5468–5479.

[29]

Chen, J. Z.; Wu, X. J.; Yin, L. S.; Li, B.; Hong, X.; Fan, Z. X.; Chen, B.; Xue, C.; Zhang, H. One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2015, 54, 1210–1214.

[30]

Chen, J. Z.; Wu, X. J.; Gong, Y.; Zhu, Y. H.; Yang, Z. Z.; Li, B.; Lu, Q. P.; Yu, Y. F.; Han, S. K.; Zhang, Z. C. et al. Edge epitaxy of two-dimensional MoSe2 and MoS2 nanosheets on one-dimensional nanowires. J. Am. Chem. Soc. 2017, 139, 8653–8660.

[31]

Razgoniaeva, N.; Moroz, P.; Lambright, S.; Zamkov, M. Photocatalytic applications of colloidal heterostructured nanocrystals: What’s next? J. Phys. Chem. Lett. 2015, 6, 4352–4359.

[32]

Schaak, R. E.; Steimle, B. C.; Fenton, J. L. Made-to-order heterostructured nanoparticle libraries. Acc. Chem. Res. 2020, 53, 2558–2568.

[33]

Steimle, B. C.; Fenton, J. L.; Schaak, R. E. Rational construction of a scalable heterostructured nanorod megalibrary. Science 2020, 367, 418–424.

[34]

Li, Z. Z.; Saruyama, M.; Asaka, T.; Tatetsu, Y.; Teranishi, T. Determinants of crystal structure transformation of ionic nanocrystals in cation exchange reactions. Science 2021, 373, 332–337.

[35]

Kruszynska, M.; Borchert, H.; Bachmatiuk, A.; Rümmeli, M. H.; Büchner, B.; Parisi, J.; Kolny-Olesiak, J. Size and shape control of colloidal copper(I) sulfide nanorods. ACS Nano 2012, 6, 5889–5896.

[36]

Wu, X. J.; Chen, J. Z.; Tan, C. L.; Zhu, Y. H.; Han, Y.; Zhang, H. Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates. Nat. Chem. 2016, 8, 470–475.

[37]

Gao, Q.; Wu, R.; Liu, Y.; Zheng, Y. R.; Li, Y.; Shang, L. M.; Ju, Y. M.; Gu, C.; Zheng, X. S.; Liu, J. W. et al. Synthesis of PdSx-mediated polydymite heteronanorods and their long-range activation for enhanced water electroreduction. Research 2019, 2019, 8078549.

[38]

Altavilla, C.; Sarno, M.; Ciambelli, P. A novel wet chemistry approach for the synthesis of hybrid 2D free-floating single or multilayer nanosheets of MS2@oleylamine (M ═ Mo, W). Chem. Mater. 2011, 23, 3879–3885.

[39]

Kresse, G.; Furthmüller, J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[40]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[41]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[42]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[43]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[44]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[45]

De Trizio, L.; Manna, L. Forging colloidal nanostructures via cation exchange reactions. Chem. Rev. 2016, 116, 10852–10887.

[46]

Gu, C.; Xu, H. M.; Han, S. K.; Gao, M. R.; Yu, S. H. Soft chemistry of metastable metal chalcogenide nanomaterials. Chem. Soc. Rev. 2021, 50, 6671–6683.

[47]

Maiti, P. S.; Ganai, A. K.; Bar-Ziv, R.; Enyashin, A. N.; Houben, L.; Bar Sadan, M. Cu2−xS-MoS2 nano-octahedra at the atomic scale: Using a template to activate the basal plane of MoS2 for hydrogen production. Chem. Mater. 2018, 30, 4489–4492.

[48]

Xu, H. M.; Gu, C.; Zhang, X. L.; Shi, L.; Gao, Q.; Hu, S. J.; Han, S. K.; Zheng, X.; Gao, M. R.; Yu, S. H. Phase-controlled 1T transition-metal dichalcogenide-based multidimensional hybrid nanostructures. CCS Chem. 2021, 3, 58–68.

[49]

Liu, Y.; Liu, M. X.; Yin, D. Q.; Qiao, L.; Fu, Z.; Swihart, M. T. Selective cation incorporation into copper sulfide based nanoheterostructures. ACS Nano 2018, 12, 7803–7811.

[50]

Sun, Z. J.; Zheng, H. F.; Li, J. S.; Du, P. W. Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni2P cocatalysts. Energy Environ. Sci. 2015, 8, 2668–2676.

[51]

Liu, G. Q.; Li, Y.; Yang, Y.; Fan, F. J.; Ding, G. H.; Wu, L.; Hu, J.; Peng, J. L.; Xu, Q.; Zhu, J. F. et al. Anti-photocorrosive photoanode with RGO/PdS as hole extraction layer. Sci. China Mater. 2020, 63, 1939–1947.

[52]

Gao, M. R.; Liang, J. X.; Zheng, Y. R.; Xu, Y. F.; Jiang, J.; Gao, Q.; Li, J.; Yu, S. H. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. 2015, 6, 5982.

[53]

Nag, A.; Kovalenko, M. V.; Lee, J. S.; Liu, W. Y.; Spokoyny, B.; Talapin, D. V. Metal-free inorganic ligands for colloidal nanocrystals: S2−, HS, Se2−, HSe, Te2−, HTe, TeS32−, OH, and NH2 as surface ligands. J. Am. Chem. Soc. 2011, 133, 10612–10620.

[54]

Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520–7535.

[55]

Wu, L.; Wang, Q.; Zhuang, T. T.; Li, Y.; Zhang, G. Z.; Liu, G. Q.; Fan, F. J.; Shi, L.; Yu, S. H. Single crystalline quaternary sulfide nanobelts for efficient solar-to-hydrogen conversion. Nat. Commun. 2020, 11, 5194.

Nano Research
Pages 7967-7973
Cite this article:
Gu C, Liu Y-Q, Liu G-Q, et al. Modular divergent creation of dual-cocatalysts integrated semiconducting sulfide nanotriads for enhanced photocatalytic hydrogen evolution. Nano Research, 2023, 16(5): 7967-7973. https://doi.org/10.1007/s12274-022-5324-0
Topics:

3853

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 13 October 2022
Revised: 07 November 2022
Accepted: 13 November 2022
Published: 23 December 2022
© Tsinghua University Press 2022
Return