AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Engineering active Ni-doped Co2P catalyst for efficient electrooxidation coupled with hydrogen evolution

Jiayi Li1,2,§Xin Mao3,§Wanbing Gong1( )Xinyu Wang1Yawen Jiang1Ran Long1( )Aijun Du3Yujie Xiong1,2( )
National Synchrotron Radiation Laboratory, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia

§ Jiayi Li and Xin Mao contributed equally to this work.

Show Author Information

Graphical Abstract

An electro-deposition and subsequent phosphorization approach is developed to fabricate Ni-doped Co2P nanosheets catalyst for efficient electrocatalytic oxidation coupled with hydrogen evolution reaction at an ultralow voltage.

Abstract

The thermodynamically favorable electrocatalytic oxidation coupled with hydrogen evolution reaction (HER) is considered as a sustainable and promising technique. Nonetheless, it remains a great challenge due to the lack of simple, cheap, and high-efficient electrocatalysts. Here, we successfully develop a simple and scalable electro-deposition and subsequent phosphorization route to fabricate Ni-doped Co2P (Ni-Co2P) nanosheets catalyst using the in-situ released Ni species from defective Ni foam as metal source. Impressively, the as-synthesized Ni-Co2P catalyst exhibits excellent electrochemical 5-hydroxymethylfurfural oxidation reaction (HOR) performance with > 99% 2,5-furandicarboxylic acid yield and > 97% Faradaic efficiency at an ultralow potential of 1.29 V vs. reversible hydrogen electrode (RHE). Experimental characterization and theoretical calculation reveal that the atomically doped Ni species can enhance the adsorption of reactant and thus lower the reaction energy barriers. By coupling the electrocatalytic HOR with HER, the employed two-electrode system using Ni-Co2P and commercial Ni foam as anode and cathode, respectively, exhibits a low cell voltage of 1.53 V to drive a current density of 10 mA·cm−2, which is 90 mV lower than that of pure water splitting. This work provides a facile and efficient approach for the preparation of high-performance earth-abundant electrocatalysts toward the concurrent production of H2 and value-added chemicals.

Electronic Supplementary Material

Download File(s)
12274_2022_5329_MOESM1_ESM.pdf (3.5 MB)

References

[1]

Lu, X. F.; Yu, L.; Lou, X. W. Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts. Sci. Adv. 2019, 5, eaav6009.

[2]

Li, W. L.; Li, F. S.; Yang, H.; Wu, X. J.; Zhang, P. L.; Shan, Y.; Sun, L. C. A bio-inspired coordination polymer as outstanding water oxidation catalyst via second coordination sphere engineering. Nat. Commun. 2019, 10, 5074.

[3]

Wang, T. H.; Tao, L.; Zhu, X. R.; Chen, C.; Chen, W.; Du, S. Q.; Zhou, Y. Y.; Zhou, B.; Wang, D. D.; Xie, C. et al. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat. Catal. 2022, 5, 66–73.

[4]

Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.

[5]

Geng, S. K.; Zheng, Y.; Li, S. Q.; Su, H.; Zhao, X.; Hu, J.; Shu, H. B.; Jaroniec, M.; Chen, P.; Liu, Q. H. et al. Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. Nat. Energy 2021, 6, 904–912.

[6]

Guan, J. Q.; Bai, X.; Tang, T. M. Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions. Nano Res. 2022, 15, 818–837.

[7]

Yan, M. L.; Zhao, Z. Y.; Cui, P. X.; Mao, K.; Chen, C.; Wang, X. Z.; Wu, Q.; Yang, H.; Yang, L. J.; Hu, Z. Construction of hierarchical FeNi3@(Fe,Ni)S2 core–shell heterojunctions for advanced oxygen evolution. Nano Res. 2021, 14, 4220–4226.

[8]

Bender, M. T.; Lam, Y. C.; Hammes-Schiffer, S.; Choi, K. S. Unraveling two pathways for electrochemical alcohol and aldehyde oxidation on NiOOH. J. Am. Chem. Soc. 2020, 142, 21538–21547.

[9]

Cha, H. G.; Choi, K. S. Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nat. Chem. 2015, 7, 328–333.

[10]

Xiang, M.; Xu, Z. H.; Wang, J. H.; Yang, X. Q.; Yan, Z. X. Accelerating H2 evolution by anodic semi-dehydrogenation of tetrahydroisoquinolines in water over Co3O4 nanoribbon arrays decorated nickel foam. Chem.—Eur. J. 2021, 27, 7502–7506.

[11]

Mondal, I.; Hausmann, J. N.; Vijaykumar, G.; Mebs, S.; Dau, H.; Driess, M.; Menezes, P. W. Nanostructured intermetallic nickel silicide (pre)catalyst for anodic oxygen evolution reaction and selective dehydrogenation of primary amines. Adv. Energy Mater. 2022, 12, 2200269.

[12]

Tang, C.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Electrocatalytic refinery for sustainable production of fuels and chemicals. Angew. Chem., Int. Ed. 2021, 60, 19572–19590.

[13]

Park, M.; Gu, M. S.; Kim, B. S. Tailorable electrocatalytic 5-hydroxymethylfurfural oxidation and H2 production: Architecture–performance relationship in bifunctional multilayer electrodes. ACS Nano 2020, 14, 6812–6822.

[14]

Lu, Y. X.; Dong, C. L.; Huang, Y. C.; Zou, Y. Q.; Liu, Y. B.; Li, Y. Y.; Zhang, N. N.; Chen, W.; Zhou, L.; Lin, H. Z. et al. Hierarchically nanostructured NiO-Co3O4 with rich interface defects for the electro-oxidation of 5-hydroxymethylfurfural. Sci. China Chem. 2020, 63, 980–986.

[15]

Kang, M. J.; Park, H.; Jegal, J.; Hwang, S. Y.; Kang, Y. S.; Cha, H. G. Electrocatalysis of 5-hydroxymethylfurfural at cobalt based spinel catalysts with filamentous nanoarchitecture in alkaline media. Appl. Catal. B: Environ. 2019, 242, 85–91.

[16]

Yang, Y. C.; Mu, T. C. Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (HMF): Pathway, mechanism, catalysts and coupling reactions. Green Chem. 2021, 23, 4228–4254.

[17]

Zhou, Y. F.; Shen, Y.; Luo, X. L. Critical practices in conducting electrochemical conversion of 5-hydroxymethylfurfural. Catal. Sci. Technol. 2021, 11, 4882–4888.

[18]

Chen, X. L.; Zhong, X.; Yuan, B. W.; Li, S. Q.; Gu, Y. B.; Zhang, Q. Q.; Zhuang, G. L.; Li, X. N.; Deng, S. W.; Wang, J. G. Defect engineering of nickel hydroxide nanosheets by Ostwald ripening for enhanced selective electrocatalytic alcohol oxidation. Green Chem. 2019, 21, 578–588.

[19]

Liu, W. J.; Dang, L. N.; Xu, Z. R.; Yu, H. Q.; Jin, S.; Huber, G. W. Electrochemical oxidation of 5-hydroxymethylfurfural with NiFe layered double hydroxide (LDH) nanosheet catalysts. ACS Catal. 2018, 8, 5533–5541.

[20]

Huang, X.; Song, J. L.; Hua, M. L.; Xie, Z. B.; Liu, S. S.; Wu, T. B.; Yang, G. Y.; Han, B. X. Enhancing the electrocatalytic activity of CoO for the oxidation of 5-hydroxymethylfurfural by introducing oxygen vacancy. Green Chem. 2020, 22, 843–849.

[21]

Lu, Y. X.; Liu, T. Y.; Dong, C. L.; Huang, Y. C.; Li, Y. F.; Chen, J.; Zou, Y. Q.; Wang, S. Y. Tuning the selective adsorption site of biomass on Co3O4 by Ir single atoms for electrosynthesis. Adv. Mater. 2021, 33, 2007056.

[22]

Luo, R. P.; Li, Y. Y.; Xing, L. X.; Wang, N.; Zhong, R. Y.; Qian, Z. Y.; Du, C. Y.; Yin, G. P.; Wang, Y. C.; Du, L. A dynamic Ni(OH)2-NiOOH/NiFeP heterojunction enabling high-performance E-upgrading of hydroxymethylfurfural. Appl. Catal. B: Environ. 2022, 311, 121357.

[23]

You, B.; Jiang, N.; Liu, X.; Sun, Y. J. Simultaneous H2 generation and biomass upgrading in water by an efficient noble-metal-free bifunctional electrocatalyst. Angew. Chem., Int. Ed. 2016, 55, 9913–9917.

[24]

Sun, Y.; Wang, J.; Qi, Y. F.; Li, W. J.; Wang, C. Efficient electrooxidation of 5-hydroxymethylfurfural using Co-doped Ni3S2 catalyst: Promising for H2 production under industrial-level current density. Adv. Sci. 2022, 9, 2200957.

[25]

You, B.; Liu, X.; Jiang, N.; Sun, Y. J. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 2016, 138, 13639–13646.

[26]

Zhang, P. L.; Sheng, X.; Chen, X. Y.; Fang, Z. Y.; Jiang, J.; Wang, M.; Li, F. S.; Fan, L. Z.; Ren, Y. S.; Zhang, B. B. et al. Paired electrocatalytic oxygenation and hydrogenation of organic substrates with water as the oxygen and hydrogen source. Angew. Chem., Int. Ed. 2019, 58, 9155–9159.

[27]

Zhang, N. N.; Zou, Y. Q.; Tao, L.; Chen, W.; Zhou, L.; Liu, Z. J.; Zhou, B.; Huang, G.; Lin, H. Z.; Wang, S. Y. Electrochemical oxidation of 5-hydroxymethylfurfural on nickel nitride/carbon nanosheets: Reaction pathway determined by in situ sum frequency generation vibrational spectroscopy. Angew. Chem., Int. Ed. 2019, 58, 15895–15903.

[28]

Li, A.; Zhang, L.; Wang, F. Z.; Zhang, L.; Li, L.; Chen, H. M.; Wei, Z. D. Rational design of porous Ni-Co-Fe ternary metal phosphides nanobricks as bifunctional electrocatalysts for efficient overall water splitting. Appl. Catal. B: Environ. 2022, 310, 121353.

[29]

Zhou, H.; Ren, Y.; Li, Z. H.; Xu, M.; Wang, Y.; Ge, R. X.; Kong, X. G.; Zheng, L. R.; Duan, H. H. Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel. Nat. Commun. 2021, 12, 4679.

[30]
Lang, Z. Q.; Song, G. L.; Wu, P. P.; Zheng, D. J. A corrosion-reconstructed and stabilized economical Fe-based catalyst for oxygen evolution. Nano Res., in press, https://doi.org/10.1007/s12274-022-5006-y.
[31]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[32]

Huang, C. Q.; Huang, Y.; Liu, C. B.; Yu, Y. F.; Zhang, B. Integrating hydrogen production with aqueous selective semi-dehydrogenation of tetrahydroisoquinolines over a Ni2P bifunctional electrode. Angew. Chem., Int. Ed. 2019, 58, 12014–12017.

[33]

Li, Y. Z.; Wang, Z.; Hu, J.; Li, S. W.; Du, Y. C.; Han, X. J.; Xu, P. Metal-organic frameworks derived interconnected bimetallic metaphosphate nanoarrays for efficient electrocatalytic oxygen evolution. Adv. Funct. Mater. 2020, 30, 1910498.

[34]

Deng, B. L.; Zhou, L. S.; Jiang, Z. Q.; Jiang, Z. J. High catalytic performance of nickel foam supported Co2P-Ni2P for overall water splitting and its structural evolutions during hydrogen/oxygen evolution reactions in alkaline solutions. J. Catal. 2019, 373, 81–92.

[35]

Zhou, X. C.; Gao, H.; Wang, Y. F.; Liu, Z.; Lin, J. Q.; Ding, Y. P vacancies-enriched 3D hierarchical reduced cobalt phosphide as a precursor template for defect engineering for efficient water oxidation. J. Mater. Chem. A 2018, 6, 14939–14948.

[36]

Wang, N.; Li, X. F.; Hu, M. K.; Wei, W. B.; Zhou, S. H.; Wu, X. T.; Zhu, Q. L. Ordered macroporous superstructure of bifunctional cobalt phosphide with heteroatomic modification for paired hydrogen production and polyethylene terephthalate plastic recycling. Appl. Catal. B: Environ. 2022, 316, 121667.

[37]

Wu, R.; Xiao, B.; Gao, Q.; Zheng, Y. R.; Zheng, X. S.; Zhu, J. F.; Gao, M. R.; Yu, S. H. A Janus nickel cobalt phosphide catalyst for high-efficiency neutral-pH water splitting. Angew. Chem., Int. Ed. 2018, 57, 15445–15449.

[38]

He, P. L.; Yu, X. Y.; Lou, X. W. Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew. Chem., Int. Ed. 2017, 56, 3897–3900.

[39]

Wang, Q.; Zhang, Z.; Cai, C.; Wang, M. Y.; Zhao, Z. L.; Li, M. H.; Huang, X.; Han, S. B.; Zhou, H.; Feng, Z. X. et al. Single iridium atom doped Ni2P catalyst for optimal oxygen evolution. J. Am. Chem. Soc. 2021, 143, 13605–13615.

[40]

Li, D.; Li, Z. Y.; Zou, R.; Shi, G.; Huang, Y. M.; Yang, W.; Yang, W.; Liu, C. F.; Peng, X. W. Coupling overall water splitting and biomass oxidation via Fe-doped Ni2P@C nanosheets at large current density. Appl. Catal. B: Environ. 2022, 307, 121170.

[41]

Yu, C.; Xu, F.; Luo, L.; Abbo, H. S.; Titinchi, S. J. J.; Shen, P. K.; Tsiakaras, P.; Yin, S. B. Ni-Co-P/NF-Bimetallic Ni-Co phosphide nanosheets self-supported on nickel foam as high-performance electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 2019, 317, 191–198.

[42]

Xie, L. S.; Li, X. L.; Wang, B.; Meng, J.; Lei, H. T.; Zhang, W.; Cao, R. Molecular engineering of a 3D self-supported electrode for oxygen electrocatalysis in neutral media. Angew. Chem., Int. Ed. 2019, 58, 18883–18887.

[43]

Chen, X. X.; Zeng, S. Y.; Muheiyati, H.; Zhai, Y. J.; Li, C. C.; Ding, X. Y.; Wang, L.; Wang, D. B.; Xu, L. Q.; He, Y. Y. et al. Double-shelled Ni-Fe-P/N-doped carbon nanobox derived from a Prussian blue analogue as an electrode material for K-ion batteries and Li-S batteries. ACS Energy Lett. 2019, 4, 1496–1504.

[44]

Deng, X. H.; Xu, G. Y.; Zhang, Y. J.; Wang, L.; Zhang, J. J.; Li, J. F.; Fu, X. Z.; Luo, J. L. Understanding the roles of electrogenerated Co3+ and Co4+ in selectivity-tuned 5-hydroxymethylfurfural oxidation. Angew. Chem., Int. Ed. 2021, 60, 20535–20542.

[45]

Huang, H. L.; Yu, C.; Han, X. T.; Huang, H. W.; Wei, Q. B.; Guo, W.; Wang, Z.; Qiu, J. S. Ni, Co hydroxide triggers electrocatalytic production of high-purity benzoic acid over 400 mA·cm−2. Energy Environ. Sci. 2020, 13, 4990–4999.

Nano Research
Pages 6728-6735
Cite this article:
Li J, Mao X, Gong W, et al. Engineering active Ni-doped Co2P catalyst for efficient electrooxidation coupled with hydrogen evolution. Nano Research, 2023, 16(5): 6728-6735. https://doi.org/10.1007/s12274-022-5329-8
Topics:

4359

Views

17

Crossref

15

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 04 October 2022
Revised: 26 October 2022
Accepted: 09 November 2022
Published: 21 December 2022
© Tsinghua University Press 2022
Return