Graphical Abstract
![](https://wqketang.oss-cn-beijing.aliyuncs.com/zip-unzip/zip-f9395603-0a28-426c-9643-9f3eb19090bc/5331/files/5331-TOC.jpg?Expires=1739807570&OSSAccessKeyId=STS.NUcCcCojvJYYUbMR91h6Cut9k&Signature=O8B%2FmBNrpG82sv8XlVlK5jzUUhY%3D&security-token=CAISywJ1q6Ft5B2yfSjIr5bWCNn3grVX%2FZuyV0T8tjlkZLlvmrGSiTz2IHtKenhsBOsbtfk1mG5W5%2FgZlqJ9SptIAEfJa9d99MyBTOJx2tCT1fau5Jko1beHewHKeTOZsebWZ%2BLmNqC%2FHt6md1HDkAJq3LL%2Bbk%2FMdle5MJqP%2B%2FUFB5ZtKWveVzddA8pMLQZPsdITMWCrVcygKRn3mGHdfiEK00he8TouufTinpHMskGA1Aell7Mvyt6vcsT%2BXa5FJ4xiVtq55utye5fa3TRYgxowr%2Fwo0v0YpGya5YzHXwcPskvdKZbo78UqLQlla6w%2BGqFJqvPxr%2Fp8t%2Fx5fWJKAezhVgs8cVM8JOjIqKOscIsihkki0jwYFV55c8Fdm%2BgUooJVgIMhTnduUfAPJAGOxzJitP%2BUVGGphr60TEnBL4rB5MUctfzRpzI9yzHUTzDnGoABc56GD9mh2OgOu9UkX6XALIZIDmJPgrIURkXoN%2BfCnioj%2FzK0yEM5hVNzP3tdi2bfULLQgTV%2Fdj2pT8n8CcD7ABEZbyysNO7O6fsOq7BLBrRMZPzrF4CEellzQxt%2FqTWqAKC3u0Nc%2B66M9X5Stx7Y8kRWa8YzRlm8tXtk2SsVnDEgAA%3D%3D)
Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Photonic crystals (PCs) exhibit promising structural coloration properties and possess extensive application prospects in diverse optical fields. However, state-of-the-art inorganic or polymeric PCs show limited adaptivity as their configurations are fixed once formed. Herein, bio-organic adaptive PCs are fabricated via drop-casting of amphiphilic guanine-based peptide nucleic acid self-assembled microspheres. The high formation activation energy of up to 81.8 kJ·mol−1 suggests that the self-assembly step dominates the entire process. Therefore, the configurations along with the structural coloration of the supramolecular PCs are sensitive to self-assembly influencing parameters, showing temperature-encoded structural color evolution and solvent polarity-dependent solvatochromism. Our findings demonstrate that the supramolecular PCs are adaptive, thus showing promising potential for detection of organic solvents of different polarities in a visual and real-time manner for environmental protection or optical applications.
Joannopoulos, J. D.; Villeneuve, P. R.; Fan, S. H. Photonic crystals: Putting a new twist on light. Nature 1997, 386, 143–149.
Cai, Z. Y.; Li, Z. W.; Ravaine, S.; He, M. X.; Song, Y. L.; Yin, Y. D.; Zheng, H. B.; Teng, J. H.; Zhang, A. From colloidal particles to photonic crystals: Advances in self-assembly and their emerging applications. Chem. Soc. Rev. 2021, 50, 5898–5951.
Chen, F. X.; Huang, Y.; Li, R.; Zhang, S. L.; Wang, B. S.; Zhang, W. S.; Wu, X. K.; Jiang, Q. Y.; Wang, F.; Zhang, R. F. Bio-inspired structural colors and their applications. Chem. Commun. 2021, 57, 13448–13464.
Zhao, Y. J.; Xie, Z. Y.; Gu, H. C.; Zhu, C.; Gu, Z. Z. Bio-inspired variable structural color materials. Chem. Soc. Rev. 2012, 41, 3297–3317.
Wang, J. X.; Zhang, Y. Z.; Wang, S. T.; Song, Y. L.; Jiang, L. Bioinspired colloidal photonic crystals with controllable wettability. Acc. Chem. Res. 2011, 44, 405–415.
Tadepalli, S.; Slocik, J. M.; Gupta, M. K.; Naik, R. R.; Singamaneni, S. Bio-optics and bio-inspired optical materials. Chem. Rev. 2017, 117, 12705–12763.
Graydon, O. The fish that beat physics. Nat. Photonics 2012, 6, 794.
Wu, P. P.; Wang, J. X.; Jiang, L. Bio-inspired photonic crystal patterns. Mater. Horiz. 2020, 7, 338–365.
Lee, G. H.; Choi, T. M.; Kim, B.; Han, S. H.; Lee, J. M.; Kim, S. H. Chameleon-inspired mechanochromic photonic films composed of non-close-packed colloidal arrays. ACS Nano 2017, 11, 11350–11357.
Vatankhah-Varnosfaderani, M.; Keith, A. N.; Cong, Y. D.; Liang, H. Y.; Rosenthal, M.; Sztucki, M.; Clair, C.; Magonov, S.; Ivanov, D. A.; Dobrynin, A. V. et al. Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration. Science 2018, 359, 1509–1513.
Narkevicius, A.; Parker, R. M.; Ferrer-Orri, J.; Parton, T. G.; Lu, Z. H.; van de Kerkhof, G. T.; Frka-Petesic, B.; Vignolini, S. Revealing the structural coloration of self-assembled chitin nanocrystal films. Adv. Mater. 2022, 34, 2203300.
Palmer, B. A.; Taylor, G. J.; Brumfeld, V.; Gur, D.; Shemesh, M.; Elad, N.; Osherov, A.; Oron, D.; Weiner, S.; Addadi, L. The image-forming mirror in the eye of the scallop. Science 2017, 358, 1172–1175.
Teyssier, J.; Saenko, S. V.; van der Marel, D.; Milinkovitch, M. C. Photonic crystals cause active colour change in chameleons. Nat. Commun. 2015, 6, 6368.
Jia, Z. A.; Fernandes, M. C.; Deng, Z. F.; Yang, T.; Zhang, Q. T.; Lethbridge, A.; Yin, J.; Lee, J. H.; Han, L.; Weaver, J. C. et al. Microstructural design for mechanical–optical multifunctionality in the exoskeleton of the flower beetle Torynorrhina flammea. Proc. Natl. Acad. Sci. USA 2021, 118, e2101017118.
Kreysing, M.; Pusch, R.; Haverkate, D.; Landsberger, M.; Engelmann, J.; Ruiter, J.; Mora-Ferrer, C.; Ulbricht, E.; Grosche, J.; Franze, K. et al. Photonic crystal light collectors in fish retina improve vision in turbid water. Science 2012, 336, 1700–1703.
Lin, D. Q.; Liu, J.; Zhang, H.; Qian, Y.; Yang, H.; Liu, L. H.; Ren, A.; Zhao, Y. S.; Yu, X.; Wei, Y. et al. Gridization-driven mesoscale self-assembly of conjugated nanopolymers into luminescence-anisotropic photonic crystals. Adv. Mater. 2022, 34, 2109399.
Guo, Q. L.; Li, Y. L.; Liu, Q. J.; Li, Y. S.; Song, D. P. Janus photonic microspheres with bridged lamellar structures via droplet-confined block copolymer co-assembly. Angew. Chem., Int. Ed. 2022, 61, e202113759.
Chen, X.; Yang, X.; Song, D. P.; Men, Y. F.; Li, Y. S. Discovery and insights into organized spontaneous emulsification via interfacial self-assembly of amphiphilic bottlebrush block copolymers. Macromolecules 2021, 54, 3668–3677.
Gur, D.; Palmer, B. A.; Weiner, S.; Addadi, L. Light manipulation by guanine crystals in organisms: Biogenic scatterers, mirrors, multilayer reflectors and photonic crystals. Adv. Funct. Mater. 2017, 27, 1603514.
Berger, O.; Adler-Abramovich, L.; Levy-Sakin, M.; Grunwald, A.; Liebes-Peer, Y.; Bachar, M.; Buzhansky, L.; Mossou, E.; Forsyth, V. T.; Schwartz, T. et al. Light-emitting self-assembled peptide nucleic acids exhibit both stacking interactions and Watson–Crick base pairing. Nat. Nanotechnol. 2015, 10, 353–360.
Berger, O.; Yoskovitz, E.; Adler-Abramovich, L.; Gazit, E. Spectral transition in bio-inspired self-assembled peptide nucleic acid photonic crystals. Adv. Mater. 2016, 28, 2195–2200.
Wang, X. H.; Li, Y. C.; Zheng, J. Y.; Li, X. Y.; Liu, G. J.; Zhou, L.; Zhou, W. L.; Shao, J. Z. Polystyrene@poly(methyl methacrylate-butyl acrylate) core–shell nanoparticles for fabricating multifunctional photonic crystal films as mechanochromic and solvatochromic sensors. ACS Appl. Nano Mater. 2022, 5, 729–736.
Duan, L. L.; You, B.; Zhou, S. X.; Wu, L. M. Self-assembly of polymer colloids and their solvatochromic-responsive properties. J. Mater. Chem. 2011, 21, 687–692.
Dong, X.; Wu, P.; Schaefer, C. G.; Zhang, L. W.; Finlayson, C. E.; Wang, C. C. Solvatochromism based on structural color: Smart polymer composites for sensing and security. Mater. Des. 2018, 160, 417–426.
Zhang, Y. Q.; Fu, Q. Q.; Ge, J. P. Photonic sensing of organic solvents through geometric study of dynamic reflection spectrum. Nat. Commun. 2015, 6, 7510.
Wang, J.; Liu, K.; Xing, R. R.; Yan, X. H. Peptide self-assembly: Thermodynamics and kinetics. Chem. Soc. Rev. 2016, 45, 5589–5604.
Sun, B. B.; Tao, K.; Jia, Y.; Yan, X. H.; Zou, Q. L.; Gazit, E.; Li, J. B. Photoactive properties of supramolecular assembled short peptides. Chem. Soc. Rev. 2019, 48, 4387–4400.
Zhang, J. H.; Wang, Y. C.; Rodriguez, B. J.; Yang, R. S.; Yu, B.; Mei, D. Q.; Li, J. B.; Tao, K.; Gazit, E. Microfabrication of peptide self-assemblies: Inspired by nature towards applications. Chem. Soc. Rev. 2022, 51, 6936–6947.
Arnon, Z. A.; Pinotsi, D.; Schmidt, M.; Gilead, S.; Guterman, T.; Sadhanala, A.; Ahmad, S.; Levin, A.; Walther, P.; Kaminski, C. F. et al. Opal-like multicolor appearance of self-assembled photonic array. ACS Appl. Mater. Interfaces 2018, 10, 20783–20789.
Patel, B. B.; Walsh, D. J.; Kim, D. H.; Kwok, J.; Lee, B.; Guironnet, D.; Diao, Y. Tunable structural color of bottlebrush block copolymers through direct-write 3D printing from solution. Sci. Adv. 2020, 6, eaaz7202.
Li, Y. J.; Whyburn, G. P.; Huang, Y. Specific peptide regulated synthesis of ultrasmall platinum nanocrystals. J. Am. Chem. Soc. 2009, 131, 15998–15999.
Liu, X. C.; Fei, J. B.; Wang, A. H.; Cui, W.; Zhu, P. L.; Li, J. B. Transformation of dipeptide-based organogels into chiral crystals by cryogenic treatment. Angew. Chem., Int. Ed. 2017, 56, 2660–2663.
Tao, K.; Tang, Y. M.; Rencus-Lazar, S.; Yao, Y. F.; Xue, B.; Gilead, S.; Wei, G. H.; Gazit, E. Bioinspired supramolecular packing enables high thermo-sustainability. Angew. Chem., Int. Ed. 2020, 59, 19037–19041.
Tikhonova, T. N.; Rovnyagina, N. N.; Arnon, Z. A.; Yakimov, B. P.; Efremov, Y. M.; Cohen-Gerassi, D.; Halperin-Sternfeld, M.; Kosheleva, N. V.; Drachev, V. P.; Svistunov, A. A. et al. Mechanical enhancement and kinetics regulation of Fmoc-diphenylalanine hydrogels by thioflavin T. Angew. Chem., Int. Ed. 2021, 60, 25339–25345.
Buell, A. K.; Dhulesia, A.; White, D. A.; Knowles, T. P. J.; Dobson, C. M.; Welland, M. E. Detailed analysis of the energy barriers for amyloid fibril growth. Angew. Chem., Int. Ed. 2012, 51, 5247–5251.
Yuan, C. Q.; Ji, W.; Xing, R. R.; Li, J. B.; Gazit, E.; Yan, X. H. Hierarchically oriented organization in supramolecular peptide crystals. Nat. Rev. Chem. 2019, 3, 567–588.
Herling, T. W.; Garcia, G. A.; Michaels, T. C. T.; Grentz, W.; Dean, J.; Shimanovich, U.; Gang, H.; Müller, T.; Kav, B.; Terentjev, E. M. et al. Force generation by the growth of amyloid aggregates. Proc. Natl. Acad. Sci. USA 2015, 112, 9524–9529.
Tao, K.; Fan, Z.; Sun, L. M.; Makam, P.; Tian, Z.; Ruegsegger, M.; Shaham-Niv, S.; Hansford, D.; Aizen, R.; Pan, Z. et al. Quantum confined peptide assemblies with tunable visible to near-infrared spectral range. Nat. Commun. 2018, 9, 3217.
Foelen, Y.; Schenning, A. P. H. J. Optical indicators based on structural colored polymers. Adv. Sci. 2022, 9, 2200399.
Suppan, P. Invited review solvatochromic shifts: The influence of the medium on the energy of electronic states. J. Photochem. Photobiol. A Chem. 1990, 50, 293–330.
Wang, Y. L.; Cui, H. Q.; Zhao, Q. L.; Du, X. M. Chameleon-inspired structural-color actuators. Matter 2019, 1, 626–638.
Yang, W. H.; Xiao, S. M.; Song, Q. H.; Liu, Y. L.; Wu, Y. K.; Wang, S.; Yu, J.; Han, J. C.; Tsai, D. P. All-dielectric metasurface for high-performance structural color. Nat. Commun. 2020, 11, 1864.
Ariga, K.; Jia, X. F.; Song, J. W.; Hill, J. P.; Leong, D. T.; Jia, Y.; Li, J. B. Nanoarchitectonics beyond self-assembly: Challenges to create bio-like hierarchic organization. Angew. Chem., Int. Ed. 2020, 59, 15424–15446.
Sheehan, F.; Sementa, D.; Jain, A.; Kumar, M.; Tayarani-Najjaran, M.; Kroiss, D.; Ulijn, R. V. Peptide-based supramolecular systems chemistry. Chem. Rev. 2021, 121, 13869–13914.
Du, X. W.; Zhou, J.; Shi, J. F.; Xu, B. Supramolecular hydrogelators and hydrogels: From soft matter to molecular biomaterials. Chem. Rev. 2015, 115, 13165–13307.
Avitabile, C.; Diaferia, C.; Ventura, B. D.; Mercurio, F. A.; Leone, M.; Roviello, V.; Saviano, M.; Velotta, R.; Morelli, G.; Accardo, A. et al. Self-assembling of Fmoc-GC peptide nucleic acid dimers into highly fluorescent aggregates. Chem.—Eur. J. 2018, 24, 4729–4735.
Borthwick, A. D. 2, 5-diketopiperazines: Synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem. Rev. 2012, 112, 3641–3716.
Chin, S. M.; Synatschke, C. V.; Liu, S. P.; Nap, R. J.; Sather, N. A.; Wang, Q. F.; Álvarez, Z.; Edelbrock, A. N.; Fyrner, T.; Palmer, L. C. et al. Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators. Nat. Commun. 2018, 9, 2395.
Levin, A.; Hakala, T. A.; Schnaider, L.; Bernardes, G. J. L.; Gazit, E.; Knowles, T. P. J. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 2020, 4, 615–634.