AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Bio-organic adaptive photonic crystals enable supramolecular solvatochromism

Jiahao Zhang1,2,3,§Yan Zhang2,§Yancheng Wang1,3Sigal Rencus-Lazar4Deqing Mei1,3Ehud Gazit4,5( )Kai Tao1,2,3( )
State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou 311200, China
Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel

§ Jiahao Zhang and Yan Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

Bio-organic adaptive photonic crystals (PCs) are developed by drop-casting of the amphiphilic guanine-based peptide nucleic acid self-assembled microspheres. The configurations and the structural coloration of the microfabricated PCs are sensitive to diverse self-assembly influencing factors such as temperature and solvents, showing solvent polarity-dependent solvatochromism.

Abstract

Photonic crystals (PCs) exhibit promising structural coloration properties and possess extensive application prospects in diverse optical fields. However, state-of-the-art inorganic or polymeric PCs show limited adaptivity as their configurations are fixed once formed. Herein, bio-organic adaptive PCs are fabricated via drop-casting of amphiphilic guanine-based peptide nucleic acid self-assembled microspheres. The high formation activation energy of up to 81.8 kJ·mol−1 suggests that the self-assembly step dominates the entire process. Therefore, the configurations along with the structural coloration of the supramolecular PCs are sensitive to self-assembly influencing parameters, showing temperature-encoded structural color evolution and solvent polarity-dependent solvatochromism. Our findings demonstrate that the supramolecular PCs are adaptive, thus showing promising potential for detection of organic solvents of different polarities in a visual and real-time manner for environmental protection or optical applications.

Electronic Supplementary Material

Download File(s)
12274_2022_5331_MOESM1_ESM.pdf (907.6 KB)

References

[1]
Sakoda, K. Optical response of photonic crystals. In Optical Properties of Photonic Crystals, 2nd ed.; Sakoda, K., Ed.; Springer: Berlin, 2005; pp 99–123.
[2]

Joannopoulos, J. D.; Villeneuve, P. R.; Fan, S. H. Photonic crystals: Putting a new twist on light. Nature 1997, 386, 143–149.

[3]

Cai, Z. Y.; Li, Z. W.; Ravaine, S.; He, M. X.; Song, Y. L.; Yin, Y. D.; Zheng, H. B.; Teng, J. H.; Zhang, A. From colloidal particles to photonic crystals: Advances in self-assembly and their emerging applications. Chem. Soc. Rev. 2021, 50, 5898–5951.

[4]

Chen, F. X.; Huang, Y.; Li, R.; Zhang, S. L.; Wang, B. S.; Zhang, W. S.; Wu, X. K.; Jiang, Q. Y.; Wang, F.; Zhang, R. F. Bio-inspired structural colors and their applications. Chem. Commun. 2021, 57, 13448–13464.

[5]

Zhao, Y. J.; Xie, Z. Y.; Gu, H. C.; Zhu, C.; Gu, Z. Z. Bio-inspired variable structural color materials. Chem. Soc. Rev. 2012, 41, 3297–3317.

[6]

Wang, J. X.; Zhang, Y. Z.; Wang, S. T.; Song, Y. L.; Jiang, L. Bioinspired colloidal photonic crystals with controllable wettability. Acc. Chem. Res. 2011, 44, 405–415.

[7]

Tadepalli, S.; Slocik, J. M.; Gupta, M. K.; Naik, R. R.; Singamaneni, S. Bio-optics and bio-inspired optical materials. Chem. Rev. 2017, 117, 12705–12763.

[8]

Graydon, O. The fish that beat physics. Nat. Photonics 2012, 6, 794.

[9]

Wu, P. P.; Wang, J. X.; Jiang, L. Bio-inspired photonic crystal patterns. Mater. Horiz. 2020, 7, 338–365.

[10]

Lee, G. H.; Choi, T. M.; Kim, B.; Han, S. H.; Lee, J. M.; Kim, S. H. Chameleon-inspired mechanochromic photonic films composed of non-close-packed colloidal arrays. ACS Nano 2017, 11, 11350–11357.

[11]

Vatankhah-Varnosfaderani, M.; Keith, A. N.; Cong, Y. D.; Liang, H. Y.; Rosenthal, M.; Sztucki, M.; Clair, C.; Magonov, S.; Ivanov, D. A.; Dobrynin, A. V. et al. Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration. Science 2018, 359, 1509–1513.

[12]

Narkevicius, A.; Parker, R. M.; Ferrer-Orri, J.; Parton, T. G.; Lu, Z. H.; van de Kerkhof, G. T.; Frka-Petesic, B.; Vignolini, S. Revealing the structural coloration of self-assembled chitin nanocrystal films. Adv. Mater. 2022, 34, 2203300.

[13]

Palmer, B. A.; Taylor, G. J.; Brumfeld, V.; Gur, D.; Shemesh, M.; Elad, N.; Osherov, A.; Oron, D.; Weiner, S.; Addadi, L. The image-forming mirror in the eye of the scallop. Science 2017, 358, 1172–1175.

[14]

Teyssier, J.; Saenko, S. V.; van der Marel, D.; Milinkovitch, M. C. Photonic crystals cause active colour change in chameleons. Nat. Commun. 2015, 6, 6368.

[15]

Jia, Z. A.; Fernandes, M. C.; Deng, Z. F.; Yang, T.; Zhang, Q. T.; Lethbridge, A.; Yin, J.; Lee, J. H.; Han, L.; Weaver, J. C. et al. Microstructural design for mechanical–optical multifunctionality in the exoskeleton of the flower beetle Torynorrhina flammea. Proc. Natl. Acad. Sci. USA 2021, 118, e2101017118.

[16]

Kreysing, M.; Pusch, R.; Haverkate, D.; Landsberger, M.; Engelmann, J.; Ruiter, J.; Mora-Ferrer, C.; Ulbricht, E.; Grosche, J.; Franze, K. et al. Photonic crystal light collectors in fish retina improve vision in turbid water. Science 2012, 336, 1700–1703.

[17]

Lin, D. Q.; Liu, J.; Zhang, H.; Qian, Y.; Yang, H.; Liu, L. H.; Ren, A.; Zhao, Y. S.; Yu, X.; Wei, Y. et al. Gridization-driven mesoscale self-assembly of conjugated nanopolymers into luminescence-anisotropic photonic crystals. Adv. Mater. 2022, 34, 2109399.

[18]

Guo, Q. L.; Li, Y. L.; Liu, Q. J.; Li, Y. S.; Song, D. P. Janus photonic microspheres with bridged lamellar structures via droplet-confined block copolymer co-assembly. Angew. Chem., Int. Ed. 2022, 61, e202113759.

[19]

Chen, X.; Yang, X.; Song, D. P.; Men, Y. F.; Li, Y. S. Discovery and insights into organized spontaneous emulsification via interfacial self-assembly of amphiphilic bottlebrush block copolymers. Macromolecules 2021, 54, 3668–3677.

[20]

Gur, D.; Palmer, B. A.; Weiner, S.; Addadi, L. Light manipulation by guanine crystals in organisms: Biogenic scatterers, mirrors, multilayer reflectors and photonic crystals. Adv. Funct. Mater. 2017, 27, 1603514.

[21]

Berger, O.; Adler-Abramovich, L.; Levy-Sakin, M.; Grunwald, A.; Liebes-Peer, Y.; Bachar, M.; Buzhansky, L.; Mossou, E.; Forsyth, V. T.; Schwartz, T. et al. Light-emitting self-assembled peptide nucleic acids exhibit both stacking interactions and Watson–Crick base pairing. Nat. Nanotechnol. 2015, 10, 353–360.

[22]

Berger, O.; Yoskovitz, E.; Adler-Abramovich, L.; Gazit, E. Spectral transition in bio-inspired self-assembled peptide nucleic acid photonic crystals. Adv. Mater. 2016, 28, 2195–2200.

[23]

Wang, X. H.; Li, Y. C.; Zheng, J. Y.; Li, X. Y.; Liu, G. J.; Zhou, L.; Zhou, W. L.; Shao, J. Z. Polystyrene@poly(methyl methacrylate-butyl acrylate) core–shell nanoparticles for fabricating multifunctional photonic crystal films as mechanochromic and solvatochromic sensors. ACS Appl. Nano Mater. 2022, 5, 729–736.

[24]

Duan, L. L.; You, B.; Zhou, S. X.; Wu, L. M. Self-assembly of polymer colloids and their solvatochromic-responsive properties. J. Mater. Chem. 2011, 21, 687–692.

[25]

Dong, X.; Wu, P.; Schaefer, C. G.; Zhang, L. W.; Finlayson, C. E.; Wang, C. C. Solvatochromism based on structural color: Smart polymer composites for sensing and security. Mater. Des. 2018, 160, 417–426.

[26]

Zhang, Y. Q.; Fu, Q. Q.; Ge, J. P. Photonic sensing of organic solvents through geometric study of dynamic reflection spectrum. Nat. Commun. 2015, 6, 7510.

[27]
Berger, O.; Adler-Abramovich, L.; Gazit, E. Self-assembled peptide nucleic acids. U.S. Patent 10446768B2, October 15, 2019.
[28]

Wang, J.; Liu, K.; Xing, R. R.; Yan, X. H. Peptide self-assembly: Thermodynamics and kinetics. Chem. Soc. Rev. 2016, 45, 5589–5604.

[29]

Sun, B. B.; Tao, K.; Jia, Y.; Yan, X. H.; Zou, Q. L.; Gazit, E.; Li, J. B. Photoactive properties of supramolecular assembled short peptides. Chem. Soc. Rev. 2019, 48, 4387–4400.

[30]

Zhang, J. H.; Wang, Y. C.; Rodriguez, B. J.; Yang, R. S.; Yu, B.; Mei, D. Q.; Li, J. B.; Tao, K.; Gazit, E. Microfabrication of peptide self-assemblies: Inspired by nature towards applications. Chem. Soc. Rev. 2022, 51, 6936–6947.

[31]

Arnon, Z. A.; Pinotsi, D.; Schmidt, M.; Gilead, S.; Guterman, T.; Sadhanala, A.; Ahmad, S.; Levin, A.; Walther, P.; Kaminski, C. F. et al. Opal-like multicolor appearance of self-assembled photonic array. ACS Appl. Mater. Interfaces 2018, 10, 20783–20789.

[32]

Patel, B. B.; Walsh, D. J.; Kim, D. H.; Kwok, J.; Lee, B.; Guironnet, D.; Diao, Y. Tunable structural color of bottlebrush block copolymers through direct-write 3D printing from solution. Sci. Adv. 2020, 6, eaaz7202.

[33]

Li, Y. J.; Whyburn, G. P.; Huang, Y. Specific peptide regulated synthesis of ultrasmall platinum nanocrystals. J. Am. Chem. Soc. 2009, 131, 15998–15999.

[34]

Liu, X. C.; Fei, J. B.; Wang, A. H.; Cui, W.; Zhu, P. L.; Li, J. B. Transformation of dipeptide-based organogels into chiral crystals by cryogenic treatment. Angew. Chem., Int. Ed. 2017, 56, 2660–2663.

[35]

Tao, K.; Tang, Y. M.; Rencus-Lazar, S.; Yao, Y. F.; Xue, B.; Gilead, S.; Wei, G. H.; Gazit, E. Bioinspired supramolecular packing enables high thermo-sustainability. Angew. Chem., Int. Ed. 2020, 59, 19037–19041.

[36]

Tikhonova, T. N.; Rovnyagina, N. N.; Arnon, Z. A.; Yakimov, B. P.; Efremov, Y. M.; Cohen-Gerassi, D.; Halperin-Sternfeld, M.; Kosheleva, N. V.; Drachev, V. P.; Svistunov, A. A. et al. Mechanical enhancement and kinetics regulation of Fmoc-diphenylalanine hydrogels by thioflavin T. Angew. Chem., Int. Ed. 2021, 60, 25339–25345.

[37]

Buell, A. K.; Dhulesia, A.; White, D. A.; Knowles, T. P. J.; Dobson, C. M.; Welland, M. E. Detailed analysis of the energy barriers for amyloid fibril growth. Angew. Chem., Int. Ed. 2012, 51, 5247–5251.

[38]

Yuan, C. Q.; Ji, W.; Xing, R. R.; Li, J. B.; Gazit, E.; Yan, X. H. Hierarchically oriented organization in supramolecular peptide crystals. Nat. Rev. Chem. 2019, 3, 567–588.

[39]

Herling, T. W.; Garcia, G. A.; Michaels, T. C. T.; Grentz, W.; Dean, J.; Shimanovich, U.; Gang, H.; Müller, T.; Kav, B.; Terentjev, E. M. et al. Force generation by the growth of amyloid aggregates. Proc. Natl. Acad. Sci. USA 2015, 112, 9524–9529.

[40]

Tao, K.; Fan, Z.; Sun, L. M.; Makam, P.; Tian, Z.; Ruegsegger, M.; Shaham-Niv, S.; Hansford, D.; Aizen, R.; Pan, Z. et al. Quantum confined peptide assemblies with tunable visible to near-infrared spectral range. Nat. Commun. 2018, 9, 3217.

[41]

Foelen, Y.; Schenning, A. P. H. J. Optical indicators based on structural colored polymers. Adv. Sci. 2022, 9, 2200399.

[42]

Suppan, P. Invited review solvatochromic shifts: The influence of the medium on the energy of electronic states. J. Photochem. Photobiol. A Chem. 1990, 50, 293–330.

[43]

Wang, Y. L.; Cui, H. Q.; Zhao, Q. L.; Du, X. M. Chameleon-inspired structural-color actuators. Matter 2019, 1, 626–638.

[44]

Yang, W. H.; Xiao, S. M.; Song, Q. H.; Liu, Y. L.; Wu, Y. K.; Wang, S.; Yu, J.; Han, J. C.; Tsai, D. P. All-dielectric metasurface for high-performance structural color. Nat. Commun. 2020, 11, 1864.

[45]
Reichardt, C.; Welton, T. Solvent effects on the absorption spectra of organic compounds. In Solvents and Solvent Effects in Organic Chemistry; 4th ed. Reichardt, C.; Welton, T., Eds.; Wiley-VCH Publishers: Weinheim, 2011; pp 359–424.
[46]

Ariga, K.; Jia, X. F.; Song, J. W.; Hill, J. P.; Leong, D. T.; Jia, Y.; Li, J. B. Nanoarchitectonics beyond self-assembly: Challenges to create bio-like hierarchic organization. Angew. Chem., Int. Ed. 2020, 59, 15424–15446.

[47]

Sheehan, F.; Sementa, D.; Jain, A.; Kumar, M.; Tayarani-Najjaran, M.; Kroiss, D.; Ulijn, R. V. Peptide-based supramolecular systems chemistry. Chem. Rev. 2021, 121, 13869–13914.

[48]

Du, X. W.; Zhou, J.; Shi, J. F.; Xu, B. Supramolecular hydrogelators and hydrogels: From soft matter to molecular biomaterials. Chem. Rev. 2015, 115, 13165–13307.

[49]

Avitabile, C.; Diaferia, C.; Ventura, B. D.; Mercurio, F. A.; Leone, M.; Roviello, V.; Saviano, M.; Velotta, R.; Morelli, G.; Accardo, A. et al. Self-assembling of Fmoc-GC peptide nucleic acid dimers into highly fluorescent aggregates. Chem.—Eur. J. 2018, 24, 4729–4735.

[50]

Borthwick, A. D. 2, 5-diketopiperazines: Synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem. Rev. 2012, 112, 3641–3716.

[51]

Chin, S. M.; Synatschke, C. V.; Liu, S. P.; Nap, R. J.; Sather, N. A.; Wang, Q. F.; Álvarez, Z.; Edelbrock, A. N.; Fyrner, T.; Palmer, L. C. et al. Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators. Nat. Commun. 2018, 9, 2395.

[52]

Levin, A.; Hakala, T. A.; Schnaider, L.; Bernardes, G. J. L.; Gazit, E.; Knowles, T. P. J. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 2020, 4, 615–634.

Nano Research
Pages 12092-12097
Cite this article:
Zhang J, Zhang Y, Wang Y, et al. Bio-organic adaptive photonic crystals enable supramolecular solvatochromism. Nano Research, 2023, 16(10): 12092-12097. https://doi.org/10.1007/s12274-022-5331-1
Topics:
Part of a topical collection:

11855

Views

5

Crossref

7

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 11 October 2022
Revised: 09 November 2022
Accepted: 15 November 2022
Published: 29 December 2022
© Tsinghua University Press 2022
Return