Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Co-free Li-rich Mn-based layered oxides are promising candidates for next-generation lithium-ion batteries (LIBs) due to their high specific capacity, high voltage, and low cost. However, their commercialization is hindered by limited cycle life and poor rate performance. Herein, an in-situ simple and low-cost strategy with a nanoscale double-layer architecture of lithium polyphosphate (LiPP) and spinel phase covered on top of the bulk layered phase, is developed for Li1.2Mn0.6Ni0.2O2 (LMNO) using Li+-conductor LiPP (denoted as LMNO@S-LiPP). With such a double-layer covered architecture, the half-cell of LMNO@S-LiPP delivers an extremely high capacity of 202.5 mAh·g−1 at 1 A·g−1 and retains 85.3% of the initial capacity after 300 cycles, so far, the best high-rate electrochemical performance of all the previously reported LMNOs. The energy density of the full-cell assembled with commercial graphite reaches 620.9 Wh·kg−1 (based on total weight of active materials in cathode and anode). Mechanism studies indicate that the superior electrochemical performance of LMNO@S-LiPP is originated from such a nanoscale double-layer covered architecture, which accelerates Li-ion diffusion, restrains oxygen release, inhibits interfacial side reactions, and suppresses structural degradation during cycling. Moreover, this strategy is applicable for other high-energy-density cathodes, such as LiNi0.8Co0.1Mn0.1O2, Li1.2Ni0.13Co0.13Mn0.54O2, and LiCoO2. Hence, this work presents a simple, cost-effective, and scalable strategy for the development of high-performance cathode materials.
Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.
Murdock, B. E.; Toghill, K. E.; Tapia-Ruiz, N. A perspective on the sustainability of cathode materials used in lithium-ion batteries. Adv. Energy Mater. 2021, 11, 2102028.
Huang, A. M.; Ma, Y. C.; Peng, J.; Li, L. L.; Chou, S. L.; Ramakrishna, S.; Peng, S. J. Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology. eScience 2021, 1, 141–162.
Wu, M. M.; Zhao, Y.; Zhang, H. T.; Zhu, J.; Ma, Y. F.; Li, C. X.; Zhang, Y. M.; Chen, Y. S. A 2D covalent organic framework with ultra-large interlayer distance as high-rate anode material for lithium-ion batteries. Nano Res. 2022, 15, 9779–9784.
Wang, J.; He, X.; Paillard, E.; Laszczynski, N.; Li, J.; Passerini, S. Lithium- and manganese-rich oxide cathode materials for high-energy lithium ion batteries. Adv. Energy Mater. 2016, 6, 1600906.
Zheng, J. M.; Myeong, S.; Cho, W.; Yan, P. F.; Xiao, J.; Wang, C. M.; Cho, J.; Zhang, J. G. Li- and Mn-rich cathode materials: Challenges to commercialization. Adv. Energy Mater. 2017, 7, 1601284.
He, W.; Guo, W. B.; Wu, H. L.; Lin, L.; Liu, Q.; Han, X.; Xie, Q. S.; Liu, P. F.; Zheng, H. F.; Wang, L. S. et al. Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries. Adv. Mater. 2021, 33, 2005937.
Assat, G.; Tarascon, J. M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 2018, 3, 373–386.
Zuo, W. H.; Luo, M. Z.; Liu, X. S.; Wu, J.; Liu, H. D.; Li, J.; Winter, M.; Fu, R. Q.; Yang, W. L.; Yang, Y. Li-rich cathodes for rechargeable Li-based batteries: Reaction mechanisms and advanced characterization techniques. Energy Environ. Sci. 2020, 13, 4450–4497.
Zhang, H. L.; Liu, H.; Piper, L. F. J.; Whittingham, M. S.; Zhou, G. W. Oxygen loss in layered oxide cathodes for Li-ion batteries: Mechanisms, effects, and mitigation. Chem. Rev. 2022, 122, 5641–5681.
Eum, D.; Kim, B.; Kim, S. J.; Park, H.; Wu, J. P.; Cho, S. P.; Yoon, G.; Lee, M. H.; Jung, S. K.; Yang, W. L. et al. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nat. Mater. 2020, 19, 419–427.
Zheng, J. M.; Shi, W.; Gu, M.; Xiao, J.; Zuo, P. J.; Wang, C. M.; Zhang, J. G. Electrochemical kinetics and performance of layered composite cathode material Li[Li0.2Ni0.2Mn0.6]O2. J. Electrochem. Soc. 2013, 160, A2212.
Yu, X. Q.; Lyu, Y.; Gu, L.; Wu, H. M.; Bak, S. M.; Zhou, Y. N.; Amine, K.; Ehrlich, S. N.; Li, H.; Nam, K. W. et al. Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials. Adv. Energy Mater. 2014, 4, 1300950.
Zhao, H.; Lam, W. Y. A.; Sheng, L.; Wang, L.; Bai, P.; Yang, Y.; Ren, D. S.; Xu, H.; He, X. M. Cobalt-free cathode materials: Families and their prospects. Adv. Energy Mater. 2022, 12, 2103894.
Zhang, X. F.; Belharouak, I.; Li, L.; Lei, Y.; Elam, J. W.; Nie, A. M.; Chen, X. Q.; Yassar, R. S.; Axelbaum, R. L. Structural and electrochemical study of Al2O3 and TiO2 coated Li1.2Ni0.13Mn0.54Co0.13O2 cathode material using ALD. Adv. Energy Mater. 2013, 3, 1299–1307.
Liu, H. D.; Qian, D. N.; Verde, M. G.; Zhang, M. H.; Baggetto, L.; An, K.; Chen, Y.; Carroll, K. J.; Lau, D.; Chi, M. F. et al. Understanding the role of NH4F and Al2O3 surface co-modification on lithium-excess layered oxide Li1.2Ni0.2Mn0.6O2. ACS Appl. Mater. Interfaces 2015, 7, 19189–19200.
Zhang, C. X.; Feng, Y. Z.; Wei, B.; Liang, C. P.; Zhou, L. J.; Ivey, D. G.; Wang, P.; Wei, W. F. Heteroepitaxial oxygen-buffering interface enables a highly stable cobalt-free Li-rich layered oxide cathode. Nano Energy 2020, 75, 104995.
Zheng, J. M.; Gu, M.; Xiao, J.; Polzin, B. J.; Yan, P. F.; Chen, X. L.; Wang, C. M.; Zhang, J. G. Functioning mechanism of AlF3 coating on the Li- and Mn-rich cathode materials. Chem. Mater. 2014, 26, 6320–6327.
Zhu, W.; Tai, Z. G.; Shu, C. Y.; Chong, S. K.; Guo, S. W.; Ji, L. J.; Chen, Y. Z.; Liu, Y. N. The superior electrochemical performance of a Li-rich layered cathode material with Li-rich spinel Li4Mn5O12 and MgF2 double surface modifications. J. Mater. Chem. A 2020, 8, 7991–8001.
Zhao, H.; Li, W. T.; Li, J. X.; Xu, H. Y.; Zhang, C.; Li, J.; Han, C.; Li, Z. L.; Chu, M.; Qiu, X. P. Enhance performances of Co-free Li-rich cathode by eutesctic melting salt treatment. Nano Energy 2022, 92, 106760.
Ma, Y. T.; Liu, P. F.; Xie, Q. S.; Zhang, G. B.; Zheng, H. F.; Cai, Y. X.; Li, Z.; Wang, L. S.; Zhu, Z. Z.; Mai, L. Q. et al. Double-shell Li-rich layered oxide hollow microspheres with sandwich-like carbon@spinel@layered@spinel@carbon shells as high-rate lithium ion battery cathode. Nano Energy 2019, 59, 184–196.
Si, M. T.; Wang, D. D.; Zhao, R.; Pan, D.; Zhang, C.; Yu, C. Y.; Lu, X.; Zhao, H. L.; Bai, Y. Local electric-field-driven fast Li diffusion kinetics at the piezoelectric LiTaO3 modified Li-rich cathode-electrolyte interphase. Adv. Sci. 2020, 7, 1902538.
Zhao, E. Y.; Liu, X. F.; Hu, Z. B.; Sun, L. M.; Xiao, X. L. Facile synthesis and enhanced electrochemical performances of Li2TiO3-coated lithium-rich layered Li1.13Ni0.30Mn0.57O2 cathode materials for lithium-ion batteries. J. Power Sources 2015, 294, 141–149.
Lee, Y.; Lee, J.; Lee, K. Y.; Mun, J.; Lee, J. K.; Choi, W. Facile formation of a Li3PO4 coating layer during the synthesis of a lithium-rich layered oxide for high-capacity lithium-ion batteries. J. Power Sources 2016, 315, 284–293.
Guo, W. B.; Zhang, C. Y.; Zhang, Y. G.; Lin, L.; He, W.; Xie, Q. S.; Sa, B.; Wang, L. S.; Peng, D. L. A universal strategy toward the precise regulation of initial coulombic efficiency of Li-rich Mn-based cathode materials. Adv. Mater. 2021, 33, 2103173.
Zhu, X. H.; Meng, F. Q.; Zhang, Q. H.; Xue, L.; Zhu, H.; Lan, S.; Liu, Q.; Zhao, J.; Zhuang, Y. H.; Guo, Q. B. et al. LiMnO2 cathode stabilized by interfacial orbital ordering for sustainable lithium-ion batteries. Nat. Sustain. 2021, 4, 392–401.
Liu, J. X.; Wang, J. Q.; Ni, Y. X.; Zhang, Y. D.; Luo, J.; Cheng, F. Y.; Chen, J. Spinel/lithium-rich manganese oxide hybrid nanofibers as cathode materials for rechargeable lithium-ion batteries. Small Methods 2019, 3, 1900350.
Liu, P. F.; Zhang, H.; He, W.; Xiong, T. F.; Cheng, Y.; Xie, Q. S.; Ma, Y. T.; Zheng, H. F.; Wang, L. S.; Zhu, Z. Z. et al. Lithium deficiencies engineering in Li-rich layered oxide Li1.098Mn0.533Ni0.113Co0.138O2 for high-stability cathode. J. Am. Chem. Soc. 2019, 141, 10876–10882.
Zhang, X. D.; Shi, J. L.; Liang, J. Y.; Yin, Y. X.; Zhang, J. N.; Yu, X. Q.; Guo, Y. G. Suppressing surface lattice oxygen release of Li-rich cathode materials via heterostructured spinel Li4Mn5O12 coating. Adv. Mater. 2018, 30, 1801751.
Zhu, Y. F.; Xiao, Y.; Dou, S. X.; Kang, Y. M.; Chou, S. L. Spinel/post-spinel engineering on layered oxide cathodes for sodium-ion batteries. eScience 2021, 1, 13–27.
Zhu, A. P.; Wu, J. H.; Wang, B. Y.; Zhou, J. W.; Zhang, Y.; Guo, Y.; Wu, K. P.; Wu, H.; Wang, Q.; Zhang, Y. Harmonious dual-riveting interface induced from niobium oxides coating toward superior stability of Li-rich Mn-based cathode. ACS Appl. Mater. Interfaces 2021, 13, 61248–61257.
Li, Q. Y.; Zhou, D.; Zhang, L. J.; Ning, D.; Chen, Z. H.; Xu, Z. J.; Gao, R.; Liu, X. Z.; Xie, D. H.; Schumacher, G. et al. Tuning anionic redox activity and reversibility for a high-capacity Li-rich Mn-based oxide cathode via an integrated strategy. Adv. Funct. Mater. 2019, 29, 1806706.
Xiao, Y. H.; Miara, L. J.; Wang, Y.; Ceder, G. Computational screening of cathode coatings for solid-state batteries. Joule 2019, 3, 1252–1275.
Du, Y. H.; Sheng, H.; Meng, X. H.; Zhang, X. D.; Zou, Y. G.; Liang, J. Y.; Fan, M.; Wang, F. Y.; Tang, J. L.; Cao, F. F. et al. Chemically converting residual lithium to a composite coating layer to enhance the rate capability and stability of single-crystalline Ni-rich cathodes. Nano Energy 2022, 94, 106901.
Xu, L. Q.; Sun, Z. H.; Zhu, Y.; Han, Y.; Wu, M. M.; Ma, Y. F.; Huang, Y.; Zhang, H. T.; Chen, Y. S. A Li-rich layered-spinel cathode material for high capacity and high rate lithium-ion batteries fabricated via a gas-solid reaction. Sci. China Mater. 2020, 63, 2435–2442.
Sun, Z. H.; Xu, L. Q.; Dong, C. Q.; Zhang, H. T.; Zhang, M. T.; Ma, Y. F.; Liu, Y. Y.; Li, Z. J.; Zhou, Y.; Han, Y. et al. A facile gaseous sulfur treatment strategy for Li-rich and Ni-rich cathode materials with high cycling and rate performance. Nano Energy 2019, 63, 103887.
Meng, J. X.; Xu, L. S.; Ma, Q. X.; Yang, M. Q.; Fang, Y. Z.; Wan, G. Y.; Li, R. H.; Yuan, J. J.; Zhang, X. K.; Yu, H. J. et al. Modulating crystal and interfacial properties by W-gradient doping for highly stable and long life Li-rich layered cathodes. Adv. Funct. Mater. 2022, 32, 2113013.
Zheng, H. F.; Zhang, C. Y.; Zhang, Y. G.; Lin, L.; Liu, P. F.; Wang, L. S.; Wei, Q. L.; Lin, J.; Sa, B.; Xie, Q. S. et al. Manipulating the local electronic structure in Li-rich layered cathode towards superior electrochemical performance. Adv. Funct. Mater. 2021, 31, 2100783.
Luo, D.; Ding, X. K.; Hao, X. D.; Xie, H. X.; Cui, J. X.; Liu, P. Z.; Yang, X. H.; Zhang, Z. H.; Guo, J. J.; Sun, S. H. et al. Ni/Mn and Al dual concentration-gradients to mitigate voltage decay and capacity fading of Li-rich layered cathodes. ACS Energy Lett. 2021, 6, 2755–2764.
Cai, Y. X.; Ku, L.; Wang, L. S.; Ma, Y. T.; Zheng, H. F.; Xu, W. J.; Han, J. T.; Qu, B. H.; Chen, Y. Z.; Xie, Q. S. et al. Engineering oxygen vacancies in hierarchically Li-rich layered oxide porous microspheres for high-rate lithium ion battery cathode. Sci. China Mater. 2019, 62, 1374–1384.
Lee, M. J.; Lho, E.; Oh, P.; Son, Y.; Cho, J. Simultaneous surface modification method for 0.4Li2MnO3-0.6LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries:Acid treatment and LiCoPO4 coating. Nano Res. 2017, 10, 4210–4220.
Peng, J. M.; Li, Y.; Chen, Z. Q.; Liang, G. M.; Hu, S. J.; Zhou, T. F.; Zheng, F. H.; Pan, Q. C.; Wang, H. Q.; Li, Q. Y. et al. Phase compatible NiFe2O4 coating tunes oxygen redox in Li-rich layered oxide. ACS Nano 2021, 15, 11607–11618.
Sun, J. M.; Sheng, C. C.; Cao, X.; Wang, P. F.; He, P.; Yang, H. J.; Chang, Z.; Yue, X. Y.; Zhou, H. S. Restraining oxygen release and suppressing structure distortion in single-crystal Li-rich layered cathode materials. Adv. Funct. Mater. 2022, 32, 2110295.
Zhang, X. D.; Shi, J. L.; Liang, J. Y.; Yin, Y. X.; Guo, Y. G.; Wan, L. J. Structurally modulated Li-rich cathode materials through cooperative cation doping and anion hybridization. Sci. China Chem. 2017, 60, 1554–1560.
Ruther, R. E.; Callender, A. F.; Zhou, H.; Martha, S. K.; Nanda, J. Raman microscopy of lithium-manganese-rich transition metal oxide cathodes. J. Electrochem. Soc. 2015, 162, A98.
Lanz, P.; Villevieille, C.; Novák, P. Ex situ and in situ Raman microscopic investigation of the differences between stoichiometric LiMO2 and high-energy xLi2MnO3·(1 − x)LiMO2 (M = Ni, Co, Mn). Electrochim. Acta 2014, 130, 212.
Huang, W. W.; Frech, R. In situ Raman spectroscopic studies of electrochemical intercalation in LixMn2O4-based cathodes. J. Power Sources 1999, 81–82, 616–620.
Ding, X. K.; Luo, D.; Cui, J. X.; Xie, H. X.; Ren, Q. Q.; Lin, Z. An ultra-long-life lithium-rich Li1.2Mn0. 6Ni0. 2O2 cathode by three-in-one surface modification for lithium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 7778–7782.
Johnson, C. S.; Li, N.; Lefief, C.; Vaughey, J. T.; M. Thackeray, M. Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1 − x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7). Chem. Mater. 2008, 20, 6095–6106.
Li, Q. Y.; Ning, D.; Zhou, D.; An, K.; Schuck, G.; Wong, D.; Kong, W. J.; Schulz, C.; Schumacher, G.; Liu, X. F. Tuning both anionic and cationic redox chemistry of Li-Rich Li1.2Mn0.6Ni0.2O2 via a “Three-in-One” Strategy. Chem. Mater. 2020, 32, 9404–9414.
Chen, Q.; Pei, Y.; Chen, H. W.; Song, Y.; Zhen, L.; Xu, C. Y.; Xiao, P. H.; Henkelman, G. Highly reversible oxygen redox in layered compounds enabled by surface polyanions. Nat. Commun. 2020, 11, 3411.
Vu, N. H.; Im, J. C.; Unithrattil, S.; Im, W. B. Synergic coating and doping effects of Ti-modified integrated layered-spinel Li1.2Mn0.75Ni0. 25O2+δ as a high capacity and long lifetime cathode material for Li-ion batteries. J. Mater. Chem. A 2018, 6, 2200–2211.
Li, L.; Wang, L. C.; Zhang, X. X.; Xue, Q.; Wei, L.; Wu, F.; Chen, R. J. 3D reticular Li1.2Ni0.2Mn0.6O2 cathode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 1516–1523.
Hua, W. B.; Wu, Z. G.; Chen, M. Z.; Knapp, M.; Guo, X. D.; Indris, S.; Binder, J. R.; Bramnik, N. N.; Zhong, B. H.; Guo, H. P. et al. Shape-controlled synthesis of hierarchically layered lithium transition-metal oxide cathode materials by shear exfoliation in continuous stirred-tank reactors. J. Mater. Chem. A 2017, 5, 25391–25400.
Zhao, T. L.; Li, L.; Chen, R. J.; Wu, H. M.; Zhang, X. X.; Chen, S.; Xie, M.; Wu, F.; Lu, J.; Amine, K. Design of surface protective layer of LiF/FeF3 nanoparticles in Li-rich cathode for high-capacity Li-ion batteries. Nano Energy 2015, 15, 164–176.
Liu, Y. C.; Wang, J.; Wu, J. W.; Ding, Z. Y.; Yao, P. H.; Zhang, S. L.; Chen, Y. A. 3D cube-maze-like Li-rich layered cathodes assembled from 2D porous nanosheets for enhanced cycle stability and rate capability of lithium-ion batteries. Adv. Energy Mater. 2020, 10, 1903139.
Yang, X. R.; Wang, C. W.; Yan, P. F.; Jiao, T. P.; Hao, J. L.; Jiang, Y. Y.; Ren, F. C.; Zhang, W. G.; Zheng, J. M.; Cheng, Y. et al. Pushing lithium cobalt oxides to 4.7 V by lattice-matched interfacial engineering. Adv. Energy Mater. 2022, 12, 2200197.
Wang, E. R.; Xiao, D. D.; Wu, T. H.; Liu, X. S.; Zhou, Y. N.; Wang, B. Y.; Lin, T.; Zhang, X.; Yu, H. J. Al/Ti synergistic doping enhanced cycle stability of Li-rich layered oxides. Adv. Funct. Mater. 2022, 32, 2201744.
Zhu, Z.; Gao, R.; Waluyo, I.; Dong, Y. H.; Hunt, A.; Lee, J.; Li, J. Stabilized Co-free Li-rich oxide cathode particles with an artificial surface prereconstruction. Adv. Energy Mater. 2020, 10, 2001120.
Zhang, J. C.; Zhang, Q. H.; Wong, D.; Zhang, N.; Ren, G. X.; Gu, L.; Schulz, C.; He, L. H.; Yu, Y.; Liu, X. F. Addressing voltage decay in Li-rich cathodes by broadening the gap between metallic and anionic bands. Nat. Commun. 2021, 12, 3071.
Wang, Y.; Wang, Z. X.; Wu, D. X.; Niu, Q. H.; Lu, P. S.; Ma, T. H.; Su, Y. B.; Chen, L. Q.; Li, H.; Wu, F. Stable Ni-rich layered oxide cathode for sulfide-based all-solid-state lithium battery. eScience 2022, 2, 537–545.
Han, J. G.; Lee, J. B.; Cha, A.; Lee, T. K.; Cho, W.; Chae, S.; Kang, S. J.; Kwak, S. K.; Cho, J.; Hong, S. Y. et al. Unsymmetrical fluorinated malonatoborate as an amphoteric additive for high-energy-density lithium-ion batteries. Energy Environ. Sci. 2018, 11, 1552–1562.
Mu, P. Z.; Zhang, H. R.; Jiang, H. Z.; Dong, T. T.; Zhang, S.; Wang, C.; Li, J. D.; Ma, Y.; Dong, S. M.; Cui, G. L. Bioinspired antiaging binder additive addressing the challenge of chemical degradation of electrolyte at cathode/electrolyte interphase. J. Am. Chem. Soc. 2021, 143, 18041–18051.
Andersson, A. M.; Abraham, D. P.; Haasch, R.; MacLaren, S.; Liu, J.; Amine, K. Surface characterization of electrodes from high power lithium-ion batteries. J. Electrochem. Soc. 2002, 149, A1358.
Zhang, F. L.; Zhou, X. A.; Fu, X. L.; Wang, C.; Wang, B.; Liang, W. B.; Wang, P.; Huang, J.; Li, S. Y. Which is the winner between the single-crystalline and polycrystalline LiNi0.80Co0.15Al0.05O2 cathode in the lithium-ion battery? Mater. Today Energy 2021, 22, 100873.
Wu, S. X.; Yang, Y. J.; Liu, C. B.; Liu, T. F.; Zhang, Y. P.; Zhang, B. K.; Luo, D.; Pan, F.; Lin, Z. In-situ polymerized binder: A three-in-one design strategy for all-integrated SiOx anode with high mass loading in lithium ion batteries. ACS Energy Lett. 2021, 6, 290–297.
Aurbach, D.; Zaban, A.; Ein-Eli, Y.; Weissman, I.; Chusid, O.; Markovsky, B.; Levi, M.; Levi, E.; Schechter, A.; Granot, E. Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems. J. Power Sources 1997, 68, 91–98.
Kawamura, T.; Okada, S.; Yamaki, J. I. Decomposition reaction of LiPF6-based electrolytes for lithium ion cells. J. Power Sources 2006, 156, 547–554.
Jo, C. H.; Cho, D. H.; Noh, H. J.; Yashiro, H.; Sun, Y. K.; Myung, S. T. An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer. Nano Res. 2015, 8, 1464–1479.
Luo, D.; Cui, J. X.; Zhang, B. K.; Fan, J. M.; Liu, P. Z.; Ding, X. K.; Xie, H. X.; Zhang, Z. H.; Guo, J. J.; Pan, F. et al. Ti-based surface integrated layer and bulk doping for stable voltage and long life of Li-rich layered cathodes. Adv. Funct. Mater. 2021, 31, 2009310.
Li, Q. Y.; Ning, D.; Zhou, D.; An, K.; Wong, D.; Zhang, L. J.; Chen, Z. H.; Schuck, G.; Schulz, C.; Xu, Z. J. et al. The effect of oxygen vacancy and spinel phase integration on both anionic and cationic redox in Li-rich cathode materials. J. Mater. Chem. A 2020, 8, 7733–7745.
Bao, L. Y.; Wei, L.; Fu, N. T.; Dong, J. Y.; Chen, L.; Su, Y. F.; Li, N.; Lu, Y.; Li, Y. J.; Chen, S. et al. Urea-assisted mixed gas treatment on Li-rich layered oxide with enhanced electrochemical performance. J. Energy Chem. 2022, 66, 123–132.
Yang, J. C.; Chen, Y. X.; Li, Y. J.; Xi, X. M.; Zheng, J. C.; Zhu, Y. L.; Xiong, Y. K.; Liu, S. W. Encouraging voltage stability upon long cycling of Li-rich Mn-based cathode materials by Ta-Mo dual doping. ACS Appl. Mater. Interfaces 2021, 13, 25981–25992.
Yu, R. Z.; Wang, X. Y.; Fu, Y. Q.; Wang, L. W.; Cai, S. Y.; Liu, M. H.; Lu, B.; Wang, G.; Wang, D.; Ren, Q. F. et al. Effect of magnesium doping on properties of lithium-rich layered oxide cathodes based on a one-step co-precipitation strategy. J. Mater. Chem. A 2016, 4, 4941–4951.
Ni, L. S.; Guo, R. T.; Fang, S. S.; Chen, J.; Gao, J. Q.; Mei, Y.; Zhang, S.; Deng, W. T.; Zou, G. Q.; Hou, H. S. et al. Crack-free single-crystalline Co-free Ni-rich LiNi0.95Mn0.05O2 layered cathode. eScience 2022, 2, 116–124.