AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Fabrication of 3D hollow acorn-shell-like PtBi intermetallics via a surfactant-free pathway for efficient ethylene glycol electrooxidation

Tingting Wan1,2,§Xin Huang1,§Sichen Li1,2,§Qiuyu Li1,2Xianlong Yang1,2Zhenjie Sun1( )Dong Xiang1Kun Wang1( )Peng Li1,2( )Manzhou Zhu1,2
Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China
Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, China

§ Tingting Wan, Xin Huang, and Sichen Li contributed equally to this work.

Show Author Information

Graphical Abstract

The atomically ordered bimetallic PtBi intermetallics with clean surfaces and unique three-dimensional hollow acorn-shell-like structure (3D PtBi HASL) exhibited prominent mass activity (24.67 A·mgPt−1) toward ethylene glycol oxidation reaction under alkaline conditions.

Abstract

The synthesis of atomically ordered Pt-based intermetallic electrocatalysts for the direct alcohol fuel cells generally requires the addition of surfactants or the high-temperature annealing. However, some residual surfactants on the surface of the as-synthesized catalysts would prevent the exposure of catalytic active sites, and the high-temperature annealing process is easy to accelerate the sintering of the metal, which both lead to the decline of electrocatalytic performance. Herein, we construct the atomically ordered bimetallic PtBi intermetallics with clean surfaces and unique three-dimensional hollow acorn-shell-like structure (3D PtBi HASL) by a simple, low-temperature, and surfactant-free one-pot synthetic approach. Benefiting from the special hollow structures, the obtained 3D PtBi HASL intermetallics expose abundant accessible active sites. Moreover, the introduction of oxophilic metal Bi can enhance adsorption of OHads, thereby significantly facilitating removal of poisoned intermediates. Density functional theory (DFT) simulations further indicate that formation of the PtBi intermetallic phase with the downshift of the Pt d-band center endows 3D Pt49.4Bi50.6 HASL intermetallics with significantly attenuated COads and enhanced OHads adsorption, bringing about the boosting electrocatalytic property. The mass activity of the 3D Pt49.4Bi50.6 HASL intermetallics for ethylene glycol oxidation reaction is as high as 24.67 A·mgPt−1, which is 12.98 times higher than that of commercial Pt/C (1.90 A·mgPt−1). This work may inspire the design of Pt-based intermetallics as high-efficiency anode electrocatalysts for fuel cell applications.

Electronic Supplementary Material

Download File(s)
12274_2022_5336_MOESM1_ESM.pdf (979.2 KB)

References

[1]

An, L.; Chen, R. Recent progress in alkaline direct ethylene glycol fuel cells for sustainable energy production. J. Power Sources 2016, 329, 484–501.

[2]

Antolini, E.; Gonzalez, E. R. Alkaline direct alcohol fuel cells. J. Power Sources 2010, 195, 3431–3450.

[3]

Serov, A.; Kwak, C. Recent achievements in direct ethylene glycol fuel cells (DEGFC). Appl. Catal. B Environ. 2010, 97, 1–12.

[4]

Wang, H.; Jiang, B.; Zhao, T. T.; Jiang, K.; Yang, Y. Y.; Zhang, J. W.; Xie, Z. X.; Cai, W. B. Electrocatalysis of ethylene glycol oxidation on bare and Bi-modified Pd concave nanocubes in alkaline solution: An interfacial infrared spectroscopic investigation. ACS Catal. 2017, 7, 2033–2041.

[5]

Ji, N.; Zhang, T.; Zheng, M. Y.; Wang, A. Q.; Wang, H.; Wang, X. D.; Chen, J. G. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angew. Chem., Int. Ed. 2008, 47, 8510–8513.

[6]

Yue, H. R.; Zhao, Y. J.; Ma, X. B.; Gong, J. L. Ethylene glycol: Properties, synthesis, and applications. Chem. Soc. Rev. 2012, 41, 4218–4244.

[7]

Qiao, B.; Yang, T.; Shi, S. F.; Jia, N.; Chen, Y.; Chen, X. B.; An, Z. W.; Chen, P. Highly active hollow RhCu nanoboxes toward ethylene glycol electrooxidation. Small 2021, 17, 2006534.

[8]

Li, S. N.; Sun, H. X.; Zhang, J. A.; Zheng, L. J.; Li, Y. R.; Fang, X.; Liu, Y. J.; Song, Q.; Wang, Z.; Gao, Y. F. et al. Interfacial synergistic effect in SnO2/PtNi nanocrystals enclosed by high-index facets for high-efficiency ethylene glycol electrooxidation. Nano Res. 2022, 15, 7877–7886.

[9]

Wang, Y.; Zhuo, H. Y.; Sun, H.; Zhang, X.; Dai, X. P.; Luan, C. L.; Qin, C. L.; Zhao, H. H.; Li, J.; Wang, M. L. et al. Implanting Mo atoms into surface lattice of Pt3Mn alloys enclosed by high-indexed facets: Promoting highly active sites for ethylene glycol oxidation. ACS Catal. 2019, 9, 442–455.

[10]

Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p–d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202115735.

[11]
Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/ANIE.202213318.
[12]

Gong, Z. C.; Liu, R.; Gong, H. S.; Ye, G. L.; Liu, J. J.; Dong, J. C.; Liao, J. W.; Yan, M. M.; Liu, J. B.; Huang, K. et al. Constructing a graphene-encapsulated amorphous/crystalline heterophase NiFe alloy by microwave thermal shock for boosting the oxygen evolution reaction. ACS Catal. 2021, 11, 12284–12292.

[13]

Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru–Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

[14]

Huang, L. P.; Zhang, W.; Zhong, Y. F.; Li, P.; Xiang, D.; Uddin, W.; Li, X. W.; Wang, Y. G.; Yuan, X. Y.; Wang, D. S. et al. Surface-structure tailoring of ultrafine PtCu nanowires for enhanced electrooxidation of alcohols. Sci. China Mater. 2021, 64, 601–610.

[15]

Zhao, X. R.; Cheng, H.; Song, L.; Han, L. L.; Zhang, R.; Kwon, G.; Ma, L.; Ehrlich, S. N.; Frenkel, A. I.; Yang, J. et al. Rhombohedral ordered intermetallic nanocatalyst boosts the oxygen reduction reaction. ACS Catal. 2021, 11, 184–192.

[16]

Xing, Z. H.; Li, J.; Wang, S.; Su, C. L.; Jin, H. L. Structure engineering of PtCu3/C catalyst from disordered to ordered intermetallic compound with heat-treatment for the methanol electrooxidation reaction. Nano Res. 2022, 15, 3866–3871.

[17]

Xiao, W. P.; Lei, W.; Gong, M. X.; Xin, H. L.; Wang, D. L. Recent advances of structurally ordered intermetallic nanoparticles for electrocatalysis. ACS Catal. 2018, 8, 3237–3256.

[18]

Zhu, Z. Q.; Liu, F.; Fan, J. C.; Li, Q. X.; Min, Y. L.; Xu, Q. J. C2 alcohol oxidation boosted by trimetallic PtPbBi hexagonal nanoplates. ACS Appl. Mater. Interfaces 2020, 12, 52731–52740.

[19]

Han, X.; Wang, Q. X.; Zheng, Z. P.; Nan, Z. A.; Zhang, X. B.; Song, Z. J.; Ma, M.; Zheng, J.; Kuang, Q.; Zheng, L. S. Size-controlled intermetallic PtZn nanoparticles on N-doped carbon support for enhanced electrocatalytic oxygen reduction. ACS Sustainable Chem. Eng. 2021, 9, 3821–3827.

[20]

Qi, Z. Y.; Xiao, C. X.; Liu, C.; Goh, T. W.; Zhou, L.; Maligal-Ganesh, R.; Pei, Y. C.; Li, X. L.; Curtiss, L. A.; Huang, W. Y. Sub-4 nm PtZn intermetallic nanoparticles for enhanced mass and specific activities in catalytic electrooxidation reaction. J. Am. Chem. Soc. 2017, 139, 4762–4768.

[21]

Chen, W.; Lei, Z.; Zeng, T.; Wang, L.; Cheng, N. C.; Tan, Y. Y.; Mu, S. C. Structurally ordered PtSn intermetallic nanoparticles supported on ATO for efficient methanol oxidation reaction. Nanoscale 2019, 11, 19895–19902.

[22]

Zhu, Y. M.; Bu, L. Z.; Shao, Q.; Huang, X. Q. Structurally ordered Pt3Sn Nanofibers with highlighted antipoisoning property as efficient ethanol oxidation electrocatalysts. ACS Catal. 2020, 10, 3455–3461.

[23]

Lim, J.; Jung, C.; Hong, D.; Bak, J.; Shin, J.; Kim, M.; Song, D.; Lee, C.; Lim, J.; Lee, H. et al. Atomically ordered Pt3Mn intermetallic electrocatalysts for the oxygen reduction reaction in fuel cells. J. Mater. Chem. A 2022, 10, 7399–7408.

[24]

Du, X. X.; He, Y.; Wang, X. X.; Wang, J. N. Fine-grained and fully ordered intermetallic PtFe catalysts with largely enhanced catalytic activity and durability. Energy Environ. Sci. 2016, 9, 2623–2632.

[25]

Chen, D. J.; Tong, Y. J. Irrelevance of carbon monoxide poisoning in the methanol oxidation reaction on a PtRu electrocatalyst. Angew. Chem., Int. Ed. 2015, 54, 9394–9398.

[26]

Wu, X. Q.; Jiang, Y.; Yan, Y. C.; Li, X.; Luo, S.; Huang, J. B.; Li, J. J.; Shen, R.; Yang, D. R.; Zhang, H. Tuning surface structure of Pd3Pb/PtnPb nanocrystals for boosting the methanol oxidation reaction. Adv. Sci. 2019, 6, 1902249.

[27]

Yang, C. L.; Wang, L. N.; Yin, P.; Liu, J. Y.; Chen, M. X.; Yan, Q. Q.; Wang, Z. S.; Xu, S. L.; Chu, S. Q.; Cui, C. H. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 2021, 374, 459–464.

[28]

Jin, Y.; Ren, G. M.; Feng, Y. G.; Geng, S. Z.; Li, L.; Zhu, X.; Guo, J.; Shao, Q.; Xu, Y.; Huang, X. Q. et al. A top-down strategy to realize the synthesis of small-sized L10-platinum-based intermetallic compounds for selective hydrogenation. Nano Res. 2022, 15, 9631–9638.

[29]
Liu, R.; Gong, Z. C.; Yan, M. M.; Ye, G. L.; Fei, H. L. Aligned porous carbon film with ultralow loadings of Pt single atoms and clusters for high-current-density hydrogen generation. Nano Res., in press, https://doi.org/10.1007/s12274-022-4749-9.
[30]

Liang, W. K.; Wang, Y. W.; Zhao, L.; Guo, W.; Li, D.; Qin, W.; Wu, H. H.; Sun, Y. H.; Jiang, L. 3D anisotropic Au@Pt-Pd hemispherical nanostructures as efficient electrocatalysts for methanol, ethanol, and formic acid oxidation reaction. Adv. Mater. 2021, 33, 2100713.

[31]

Yan, X. X.; Hu, X. J.; Fu, G. T.; Xu, L.; Lee, J. M.; Tang, Y. W. Facile synthesis of porous Pd3Pt half-shells with rich “active sites” as efficient catalysts for formic acid oxidation. Small 2018, 14, 1703940.

[32]

Yao, W. Q.; Jiang, X.; Li, M.; Li, Y. L.; Liu, Y. Y.; Zhan, X.; Fu, G. T.; Tang, Y. W. Engineering hollow porous platinum-silver double-shelled nanocages for efficient electro-oxidation of methanol. Appl. Catal. B Environ. 2021, 282, 119595.

[33]

Mahsud, A.; Chen, J. N.; Yuan, X. L.; Lyu, F.; Zhong, Q. X.; Chen, J. X.; Yin, Y. D.; Zhang, Q. Self-templated formation of cobalt-embedded hollow N-doped carbon spheres for efficient oxygen reduction. Nano Res. 2021, 14, 2819–2825.

[34]

Chen, Z. L.; Zhang, J. F.; Zhang, Y.; Liu, Y. W.; Han, X. P.; Zhong, C.; Hu, W. B.; Deng, Y. D. NiO-induced synthesis of PdNi bimetallic hollow nanocrystals with enhanced electrocatalytic activities toward ethanol and formic acid oxidation. Nano Energy 2017, 42, 353–362.

[35]

Li, Z. L.; Gao, F.; Zou, B.; Wu, Z. Y.; Zhang, Y. P.; Du, Y. K. Core@shell PtAuAg@PtAg hollow nanodendrites as effective electrocatalysts for methanol and ethylene glycol oxidation. Inorg. Chem. 2021, 60, 9977–9986.

[36]

Xu, H.; Song, P. P.; Yan, B.; Wang, J.; Guo, J.; Du, Y. K. Surface-plasmon-enhanced photo-electrocatalytic ethylene glycol oxidation based on highly open AuAg nanobowls. ACS Sustainable Chem. Eng. 2018, 6, 4138–4146.

[37]

Ji, X. L.; Lee, K. T.; Holden, R.; Zhang, L.; Zhang, J. J.; Botton, G. A.; Couillard, M.; Nazar, L. F. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nat. Chem. 2010, 2, 286–293.

[38]

Zhang, J. X.; Yuan, M. L.; Zhao, T. K.; Wang, W. B.; Huang, H. Y.; Cui, K. R.; Liu, Z. J.; Li, S. W.; Li, Z. H.; Zhang, G. J. Cu-incorporated PtBi intermetallic nanofiber bundles enhance alcohol oxidation electrocatalysis with high CO tolerance. J. Mater. Chem. A 2021, 9, 20676–20684.

[39]

Yang, X. T.; Yao, K. X.; Ye, J. Y.; Yuan, Q.; Zhao, F. L.; Li, Y. F.; Zhou, Z. Y. Interface-rich three-dimensional Au-doped PtBi intermetallics as highly effective anode catalysts for application in alkaline ethylene glycol fuel cells. Adv. Funct. Mater. 2021, 31, 2103671.

[40]

Feng, Y. G.; Shao, Q.; Lv, F.; Bu, L. Z.; Guo, J.; Guo, S. J.; Huang, X. Q. Intermetallic PtBi nanoplates boost oxygen reduction catalysis with superior tolerance over chemical fuels. Adv. Sci. 2020, 7, 1800178.

[41]

Han, S. M.; Ma, Y.; Yun, Q. B.; Wang, A. L.; Zhu, Q. S.; Zhang, H.; He, C. H.; Xia, J.; Meng, X. M.; Gao, L. et al. The synergy of tensile strain and ligand effect in PtBi nanorings for boosting electrocatalytic alcohol oxidation. Adv. Funct. Mater. 2022, 2208760.

[42]

Yuan, X. L.; Jiang, X. J.; Cao, M. H.; Chen, L.; Nie, K. Q.; Zhang, Y.; Xu, Y.; Sun, X. H.; Li, Y. G.; Zhang, Q. Intermetallic PtBi core/ultrathin Pt shell nanoplates for efficient and stable methanol and ethanol electro-oxidization. Nano Res. 2019, 12, 429–436.

[43]

Simões, M.; Baranton, S.; Coutanceau, C. Enhancement of catalytic properties for glycerol electrooxidation on Pt and Pd nanoparticles induced by Bi surface modification. Appl. Catal. B Environ. 2011, 110, 40–49.

[44]

Yang, M. L. Catalytic activities of PtBi nanoparticles toward methanol electrooxidation in acid and alkaline media. J. Power Sources 2013, 229, 42–47.

[45]

Huang, Y. Y.; Cai, J. D.; Guo, Y. L. A high-efficiency microwave approach to synthesis of Bi-modified Pt nanoparticle catalysts for ethanol electro-oxidation in alkaline medium. Appl. Catal. B Environ. 2013, 129, 549–555.

[46]

Zhou, C. M.; Guo, Z.; Dai, Y. H.; Jia, X. L.; Yu, H.; Yang, Y. H. Promoting role of bismuth on carbon nanotube supported platinum catalysts in aqueous phase aerobic oxidation of benzyl alcohol. Appl. Catal. B Environ. 2016, 181, 118–126.

[47]

Sun, D.; Wang, Y. F.; Livi, K. J. T.; Wang, C. H.; Luo, R. C.; Zhang, Z. Q.; Alghamdi, H.; Li, C. Y.; An, F. F.; Gaskey, B. et al. Ordered intermetallic Pd3Bi prepared by an electrochemically induced phase transformation for oxygen reduction electrocatalysis. ACS Nano 2019, 13, 10818–10825.

[48]

Li, H. H.; Cui, C. H.; Zhao, S.; Yao, H. B.; Gao, M. R.; Fan, F. J.; Yu, S. H. Mixed-PtPd-shell PtPdCu nanoparticle nanotubes templated from copper nanowires as efficient and highly durable electrocatalysts. Adv. Energy Mater. 2012, 2, 1182–1187.

[49]

Pech-Rodríguez, W. J.; Calles-Arriaga, C.; González-Quijano, D.; Vargas-Gutiérrez, G.; Morais, C.; Napporn, T. W.; Rodríguez-Varela, F. J. Electrocatalysis of the ethylene glycol oxidation reaction and in situ Fourier-transform infared study on PtMo/C electrocatalysts in alkaline and acid media. J. Power Sources 2018, 375, 335–344.

[50]

Watanabe, M.; Zhu, Y. M.; Uchida, H. Oxidation of CO on a Pt–Fe alloy electrode studied by surface enhanced infrared reflection–absorption spectroscopy. J. Phys. Chem. B 2000, 104, 1762–1768.

[51]

Wang, C.; Jin, L. J.; Shang, H. Y.; Xu, H.; Shiraishi, Y.; Du, Y. K. Advances in engineering RuO2 electrocatalysts towards oxygen evolution reaction. Chin. Chem. Lett. 2021, 32, 2108–2116.

[52]

Casado-Rivera, E.; Volpe, D. J.; Alden, L.; Lind, C.; Downie, C.; Vázquez-Alvarez, T.; Angelo, A. C. D.; DiSalvo, F. J.; Abruña, H. D. Electrocatalytic activity of ordered intermetallic phases for fuel cell applications. J. Am. Chem. Soc. 2004, 126, 4043–4049.

[53]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[54]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[55]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[56]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[57]

Gao, D. W.; Li, S. N.; Song, G. L.; Luo, M. C.; Lv, Y. P.; Yang, S. H.; Ma, X. L.; Zhang, X.; Li, C. C.; Wei, Q. et al. Inner space- and architecture-controlled nanoframes for efficient electro-oxidation of liquid fuels. J. Mater. Chem. A 2019, 7, 19280–19289.

Nano Research
Pages 6560-6567
Cite this article:
Wan T, Huang X, Li S, et al. Fabrication of 3D hollow acorn-shell-like PtBi intermetallics via a surfactant-free pathway for efficient ethylene glycol electrooxidation. Nano Research, 2023, 16(5): 6560-6567. https://doi.org/10.1007/s12274-022-5336-9
Topics:

7276

Views

16

Crossref

16

Web of Science

17

Scopus

0

CSCD

Altmetrics

Received: 19 October 2022
Revised: 13 November 2022
Accepted: 15 November 2022
Published: 05 January 2023
© Tsinghua University Press 2022
Return