AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In-situ electrochemical restructuring of Cu2BiSx solid solution into Bi/CuxSy heterointerfaces enabling stabilization intermediates for high-performance CO2 electroreduction to formate

Xiaofeng Yang1Qinru Wang1Feiran Chen1Hu Zang1Changjiang Liu1Nan Yu1Baoyou Geng1,2( )
College of Chemistry and Materials Science, the Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Wuhu 241002, China
Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
Show Author Information

Graphical Abstract

In-situ electrochemical conversion is revealed from Cu2BiSx solid solution into Bi/CuxSy heterointerface, which adds Bi hybrid orbitals and lowers the free energy of the intermediate *OCHO for CO2 electroreduction reaction. The Bi/CuxSy promotes high formate Faraday efficiency and stability at −0.8 to −1.2 V potential window and achieves a high current density (−150 mA·cm−2) with 80% stable formate Faraday efficiency in flow cell.

Abstract

Bismuth-based materials are prevalent catalysts for CO2 electroreduction to formate, enduring high hydrogen evolution reactions and inadequate activity and stability. Herein, we reveal that in-situ electrochemical transformation of Cu2BiSx solid solution into Bi/CuxSy heterointerfaces, which can stabilize the intermediates and achieve highly selective and consistent CO2 electroreduction. It shows over 85% Faraday efficiency (FE) of formate with a potential window of −0.8 to −1.2 VRHE (RHE: reversible hydrogen electrode) and a stability above 90% over 27 h in H-type cell at −0.9 VRHE. It maintains more than 85% of FEformate at the current density of −25 to −200 mA·cm−2, and has stability of about 80% of FEformate at least 10 h at −150 mA·cm−2 in flow cell. In-situ Fourier transform infrared (FT-IR) spectroscopy measurement confirms that the preferred route of catalytic reaction is to generate *CO2 and *OCHO intermediates. The density functional theory (DFT) calculations illustrate that heterointerfaces facilitate the prior process of CO2 to HCOOH through *OCHO by additional Bi hybrid orbitals. This study is expected to open up a new idea for the design of CO2 electroreduction catalyst.

Electronic Supplementary Material

Download File(s)
12274_2022_5337_MOESM1_ESM.pdf (3 MB)

References

[1]

Honegger, M.; Michaelowa, A.; Roy, J. Potential implications of carbon dioxide removal for the sustainable development goals. Climate Policy 2021, 21, 678–698.

[2]

Jiang, J. J.; Ye, B.; Liu, J. G. Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research. Renew. Sust. Energ. Rev. 2019, 112, 813–833.

[3]

Koh, L. P.; Zeng, Y. W.; Sarira, T. V.; Siman, K. Carbon prospecting in tropical forests for climate change mitigation. Nat. Commun. 2021, 12, 1271.

[4]

Zeyringer, M.; Price, J.; Fais, B.; Li, P. H.; Sharp, E. Designing low-carbon power systems for Great Britain in 2050 that are robust to the spatiotemporal and inter-annual variability of weather. Nat. Energy 2018, 3, 395–403.

[5]

Liu, X.; Li, S. S.; Liu, Y. M.; Cao, Y. Formic acid: A versatile renewable reagent for green and sustainable chemical synthesis. Chin. J. Catal. 2015, 36, 1461–1475.

[6]

Pérez-Fortes, M.; Schöneberger, J. C.; Boulamanti, A.; Harrison, G.; Tzimas, E. Formic acid synthesis using CO2 as raw material: Techno-economic and environmental evaluation and market potential. Int. J. Hydrogen Energy 2016, 41, 16444–16462.

[7]

Zhang, J. W.; Zeng, G. M.; Chen, L. L.; Lai, W. C.; Yuan, Y. L.; Lu, Y. F.; Ma, C.; Zhang, W. H.; Huang, H. W. Tuning the reaction path of CO2 electroreduction reaction on indium single-atom catalyst: Insights into the active sites. Nano Res. 2022, 15, 4014–4022.

[8]

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

[9]

Zhang, X. L.; Zhang, Y.; Li, F. W.; Easton, C. D.; Bond, A. M.; Zhang, J. Ultra-small Cu nanoparticles embedded in N-doped carbon arrays for electrocatalytic CO2 reduction reaction in dimethylformamide. Nano Res. 2018, 11, 3678–3690.

[10]

Xiao, T. S.; Tang, C.; Li, H. B.; Ye, T.; Ba, K.; Gong, P.; Sun, Z. Z. CO2 reduction with coin catalyst. Nano Res. 2022, 15, 3859–3865.

[11]

Meng, L. Z.; Zhang, E. H.; Peng, H. Y.; Wang, Y.; Wang, D. S.; Rong, H. P.; Zhang, J. T. Bi/Zn dual single-atom catalysts for electroreduction of CO2 to syngas. ChemCatChem 2022, 14, e202101801.

[12]

Zhu, Y. T.; Cui, X. Y.; Liu, H. L.; Guo, Z. G.; Dang, Y. F.; Fan, Z. X.; Zhang, Z. C.; Hu, W. P. Tandem catalysis in electrochemical CO2 reduction reaction. Nano Res. 2021, 14, 4471–4486.

[13]

Zhang, X. L.; Sun, X. H.; Guo, S. X.; Bond, A. M.; Zhang, J. Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO2 reduction at low overpotential. Energy Environ. Sci. 2019, 12, 1334–1340.

[14]

Zhang, W. J.; Yang, S. Y.; Jiang, M. H.; Hu, Y.; Hu, C. Q.; Zhang, X. L.; Jin, Z. Nanocapillarity and nanoconfinement effects of pipet-like bismuth@carbon nanotubes for highly efficient electrocatalytic CO2 reduction. Nano Lett. 2021, 21, 2650–2657.

[15]

Wu, D.; Huo, G.; Chen, W. Y.; Fu, X. Z.; Luo, J. L. Boosting formate production at high current density from CO2 electroreduction on defect-rich hierarchical mesoporous Bi/Bi2O3 junction nanosheets. Appl. Catal. B:Environ. 2020, 271, 118957.

[16]

Li, F.; Gu, G. H.; Choi, C.; Kolla, P.; Hong, S.; Wu, T. S.; Soo, Y. L.; Masa, J.; Mukerjee, S.; Jung, Y. et al. Highly stable two-dimensional bismuth metal-organic frameworks for efficient electrochemical reduction of CO2. Appl. Catal. B:Environ. 2020, 277, 119241.

[17]

Kim, S.; Dong, W. J.; Gim, S.; Sohn, W.; Park, J. Y.; Yoo, C. J.; Jang, H. W.; Lee, J. L. Shape-controlled bismuth nanoflakes as highly selective catalysts for electrochemical carbon dioxide reduction to formate. Nano Energy 2017, 39, 44–52.

[18]

Liu, S. Y.; Hu, B. T.; Zhao, J. K.; Jiang, W. J.; Feng, D. Q.; Zhang, C.; Yao, W. Enhanced electrocatalytic CO2 reduction of bismuth nanosheets with introducing surface bismuth subcarbonate. Coatings 2022, 12, 233.

[19]

Zhang, Y.; Li, F. W.; Zhang, X. L.; Williams, T.; Easton, C. D.; Bond, A. M.; Zhang, J. Electrochemical reduction of CO2 on defect-rich Bi derived from Bi2S3 with enhanced formate selectivity. J. Mater. Chem. A 2018, 6, 4714–4720.

[20]

Duan, Y. X.; Zhou, Y. T.; Yu, Z.; Liu, D. X.; Wen, Z.; Yan, J. M.; Jiang, Q. Boosting production of HCOOH from CO2 electroreduction via Bi/CeOx. Angew. Chem., Int. Ed. 2021, 60, 8798–8802.

[21]

Zhou, J. H.; Yuan, K.; Zhou, L.; Guo, Y.; Luo, M. Y.; Guo, X. Y.; Meng, Q. Y.; Zhang, Y. W. Boosting electrochemical reduction of CO2 at a low overpotential by amorphous Ag-Bi-S-O decorated Bi0 nanocrystals. Angew. Chem., Int. Ed. 2019, 58, 14197–14201.

[22]

Yu, J. G.; Zhang, J.; Liu, S. W. Ion-exchange synthesis and enhanced visible-light photoactivity of CuS/ZnS nanocomposite hollow spheres. J. Phys. Chem. C 2010, 114, 13642–13649.

[23]

Tian, L.; Tan, H. Y.; Vittal, J. J. Morphology-controlled synthesis of Bi2S3 nanomaterials via single- and multiple-source approaches. Cryst. Growth Des. 2008, 8, 734–738.

[24]

Lv, J. J.; Yin, R. N.; Zhou, L. M.; Li, J.; Kikas, R.; Xu, T.; Wang, Z. J.; Jin, H. L.; Wang, X.; Wang, S. Microenvironment engineering for the electrocatalytic CO2 reduction reaction. Angew. Chem., Int. Ed. 2022, 134, e202207252.

[25]

Weekes, D. M.; Salvatore, D. A.; Reyes, A.; Huang, A. X.; Berlinguette, C. P. Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 2018, 51, 910–918.

[26]

Endrődi, B.; Samu, A.; Kecsenovity, E.; Halmágyi, T.; Sebők, D.; Janáky, C. Operando cathode activation with alkali metal cations for high current density operation of water-fed zero-gap carbon dioxide electrolysers. Nat. Energy 2021, 6, 439–448.

[27]

Chen, C.; Khosrowabadi Kotyk, J. F.; Sheehan, S. W. Progress toward commercial application of electrochemical carbon dioxide reduction. Chem 2018, 4, 2571–2586.

[28]

Wang, W. B.; Wang, Z. T.; Yang, R. O.; Duan, J. Y.; Liu, Y. W.; Nie, A. M.; Li, H. Q.; Xia, B. Y.; Zhai, T. Y. In situ phase separation into coupled interfaces for promoting CO2 electroreduction to formate over a wide potential window. Angew. Chem., Int. Ed. 2021, 60, 22940–22947.

[29]

Baruch, M. F.; Pander III, J. E.; White, J. L.; Bocarsly, A. B. Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy. ACS Catal. 2015, 5, 3148–3156.

[30]

Chen, S.; Chen, A. C. Electrochemical reduction of carbon dioxide on Au nanoparticles: An in situ FTIR study. J. Phys. Chem. C 2019, 123, 23898–23906.

[31]

Dutta, A.; Kuzume, A.; Rahaman, M.; Vesztergom, S.; Broekmann, P. Monitoring the chemical state of catalysts for CO2 electroreduction: An in operando study. ACS Catal. 2015, 5, 7498–7502.

[32]

Feaster, J. T.; Shi, C.; Cave, E. R.; Hatsukade, T.; Abram, D. N.; Kuhl, K. P.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F. Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 2017, 7, 4822–4827.

[33]

Firet, N. J.; Smith, W. A. Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catal. 2017, 7, 606–612.

[34]

Katayama, Y.; Nattino, F.; Giordano, L.; Hwang, J.; Rao, R. R.; Andreussi, O.; Marzari, N.; Shao-Horn, Y. An in situ surface-enhanced infrared absorption spectroscopy study of electrochemical CO2 reduction: Selectivity dependence on surface C-bound and O-bound reaction intermediates. J. Phys. Chem. C 2019, 123, 5951–5963.

[35]

Ma, W. C.; Xie, S. J.; Liu, T. T.; Fan, Q. Y.; Ye, J. Y.; Sun, F. F.; Jiang, Z.; Zhang, Q. H.; Cheng, J.; Wang, Y. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C−C coupling over fluorine-modified copper. Nat. Catal. 2020, 3, 478–487.

[36]

Mendieta-Reyes, N. E.; Cheuquepán, W.; Rodes, A.; Gómez, R. Spectroelectrochemical study of CO2 reduction on TiO2 electrodes in acetonitrile. ACS Catal. 2020, 10, 103–113.

[37]

Cheng, H.; Liu, S.; Zhang, J. D.; Zhou, T. P.; Zhang, N.; Zheng, X. S.; Chu, W. S.; Hu, Z. P.; Wu, C. Z.; Xie, Y. Surface nitrogen-injection engineering for high formation rate of CO2 reduction to formate. Nano Lett. 2020, 20, 6097–6103.

[38]

Staszak-Jirkovský, J.; Malliakas, C. D.; Lopes, P. P.; Danilovic, N.; Kota, S. S.; Chang, K. C.; Genorio, B.; Strmcnik, D.; Stamenkovic, V. R.; Kanatzidis, M. G. et al. Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater. 2016, 15, 197–203.

[39]

Yang, F.; Ma, X. Y.; Cai, W. B.; Song, P.; Xu, W. L. Nature of oxygen-containing groups on carbon for high-efficiency electrocatalytic CO2 reduction reaction. J. Am. Chem. Soc. 2019, 141, 20451–20459.

[40]

Guo, Y. B.; Chen, Q.; Nie, A. M.; Yang, H.; Wang, W. B.; Su, J. W.; Wang, S. Z.; Liu, Y. W.; Wang, S.; Li, H. Q. et al. 2D hybrid superlattice-based on-chip electrocatalytic microdevice for in situ revealing enhanced catalytic activity. ACS Nano 2020, 14, 1635–1644.

[41]

Wang J. J., Wang G. J., Zhang J. F., Wang Y. D., Wu H., Zheng X. R., Ding J., Han X. P., Deng Y. D., Hu W. B. Inversely tuning the CO2 electroreduction and hydrogen evolution activity on metal oxide via heteroatom doping. Angew. Chem. Int. Ed. 2021, 60, 7602–7606.

Nano Research
Pages 7974-7981
Cite this article:
Yang X, Wang Q, Chen F, et al. In-situ electrochemical restructuring of Cu2BiSx solid solution into Bi/CuxSy heterointerfaces enabling stabilization intermediates for high-performance CO2 electroreduction to formate. Nano Research, 2023, 16(5): 7974-7981. https://doi.org/10.1007/s12274-022-5337-8
Topics:

7549

Views

24

Crossref

15

Web of Science

26

Scopus

0

CSCD

Altmetrics

Received: 30 October 2022
Revised: 15 November 2022
Accepted: 15 November 2022
Published: 13 February 2023
© Tsinghua University Press 2022
Return