AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Heterostructured CoFe@N-doped carbon porous polyhedron for efficient microwave absorption

Dan Wu1Yiqun Wang1( )Shuanglin Deng1Di Lan2Zhongning Xiang1Qinchuan He1( )
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
Show Author Information

Graphical Abstract

The heterogeneous CoFe@N-doped porous carbon polyhedron is obtained. The RL of −67.30 dB and the effective absorption bandwidth (EAB) of 8.40 GHz were achieved.

Abstract

The synthesis of wide bandwidth, thin thickness, and high performance microwave absorbing materials has become a hot topic of current research. Metal-organic frameworks with heterojunctions and porous structures are considered as suitable candidates to meet these characteristics. Herein, heterogeneous CoFe@N-doped porous carbon polyhedron composites were successfully synthesized via Fe2+ to replace Co in zeolite imidazole frame-67. The dielectric properties of composites were enhanced by the replacement of Fe2+, and the synergistic effect of dielectric loss and magnetic loss was realized. The petal-like lamellar structure increases the travel of electromagnetic (EM) waves, and the formation of porous structures improves impedance matching. Specifically, a reflection loss of −67.30 dB was obtained at a thickness of 2.88 mm, and an ultrabroad wide effective absorption bandwidth of 8.40 GHz was obtained, covering most of the X-band (8–12 GHz) and the whole Ku-band (12–18 GHz). The radar cross section (RCS) reduction value can reach 29.4 dB·m2, which means that the radar detector has a smaller probability of detecting targets. This work describes the unique advantages of metal ion replacement metal-organic frameworks derived materials in structural design, impedance matching, and performance adjustment, and provides a new reference for the field of electromagnetic wave absorption.

Electronic Supplementary Material

Download File(s)
12274_2022_5341_MOESM1_ESM.pdf (2 MB)

References

[1]

Gai, L. X.; Zhao, H. H.; Wang, F. Y.; Wang, P.; Liu, Y. L.; Han, X. J.; Du, Y. C. Advances in core–shell engineering of carbon-based composites for electromagnetic wave absorption. Nano Res. 2022, 15, 9410–9439.

[2]

Li, C.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Magnetic-dielectric synergy and interfacial engineering to design yolk–shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption. Nano Res. 2022, 15, 6761–6771.

[3]

Xiang, Z. N.; Wang, Y. Q.; Yin, X. M.; He, Q. C. Microwave absorption performance of porous heterogeneous SiC/SiO2 microspheres. Chem. Eng. J. 2023, 451, 138742.

[4]

He, Q. C.; Li, H. J.; Tan, Q.; Lu, J. H.; Yin, X. M. Effects of ZrC particle size on ablation behavior of C/C-SiC-ZrC composites prepared by chemical liquid vapor deposition. Corros. Sci. 2022, 205, 110469.

[5]

Shu, J. C.; Cao, W. Q.; Cao, M. S. Diverse metal-organic framework architectures for electromagnetic absorbers and shielding. Adv. Funct. Mater. 2021, 31, 2100470.

[6]

Wang, L.; Yu, X. F.; Li, X.; Zhang, J.; Wang, M.; Che, R. C. MOF-derived yolk–shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption. Chem. Eng. J. 2020, 383, 123099.

[7]

Wang, L.; Ma, Z. L.; Qiu, H.; Zhang, Y. L.; Yu, Z.; Gu, J. W. Significantly enhanced electromagnetic interference shielding performances of epoxy nanocomposites with long-range aligned lamellar structures. Nano-Micro Lett. 2022, 14, 224.

[8]

Yang, J. M.; Liao, X.; Wang, G.; Chen, J.; Guo, F. M.; Tang, W. Y.; Wang, W.; Yan, Z. H.; Li, G. X. Gradient structure design of lightweight and flexible silicone rubber nanocomposite foam for efficient electromagnetic interference shielding. Chem. Eng. J. 2020, 390, 124589.

[9]

Zhang, Y. L.; Kong, J.; Gu J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.

[10]

Cui, L. R.; Wang, Y. H.; Han, X. J.; Xu, P.; Wang, F. Y.; Liu, D. W.; Zhao, H. H.; Du, Y. C. Phenolic resin reinforcement: A new strategy for hollow NiCo@C microboxes against electromagnetic pollution. Carbon 2021, 174, 673–682.

[11]

Huang, Z. Y.; Chen, H. H.; Huang, Y.; Ge, Z.; Zhou, Y.; Yang, Y.; Xiao, P. S.; Liang, J. J.; Zhang, T. F.; Shi, Q. et al. Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam. Adv. Funct. Mater. 2018, 28, 1704363.

[12]

Yin, X. Y.; Alsuwaidi, A.; Zhang, X. Y. Hierarchical metal-organic framework (MOF) pore engineering. Microporous Mesoporous Mater. 2022, 330, 111633.

[13]

Hu, M.; Ju, Y.; Liang, K.; Suma, T.; Cui, J. W.; Caruso, F. Void engineering in metal-organic frameworks via synergistic etching and surface functionalization. Adv. Funct. Mater. 2016, 26, 5827–5834.

[14]

Ejima, H.; Richardson, J. J.; Liang, K.; Best, J. P.; Van Koeverden, M. P.; Such, G. K.; Cui, J. W.; Caruso, F. One-step assembly of coordination complexes for versatile film and particle engineering. Science 2013, 341, 154–157.

[15]

Sheng, J. P.; Wang, L. Q.; Deng, L.; Zhang, M.; He, H. C.; Zeng, K.; Tang, F. Y.; Liu, Y. N. MOF-templated fabrication of hollow Co4N@N-doped carbon porous nanocages with superior catalytic activity. ACS Appl. Mater. Interfaces 2018, 10, 7191–7200.

[16]

Zhou, T. L.; Sang, Y. T.; Sun, Y. L.; Wu, C. Y.; Wang, X. X.; Tang, X.; Zhang, T.; Wang, H.; Xie, C. S.; Zeng, D. W. Gas adsorption at metal sites for enhancing gas sensing performance of ZnO@ZIF-71 nanorod arrays. Langmuir 2019, 35, 3248–3255.

[17]

Wang, C. H.; Kaneti, Y. V.; Bando, Y.; Lin, J. J.; Liu, C.; Li, J. S.; Yamauchi, Y. Metal-organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion. Mater. Horiz. 2018, 5, 394–407.

[18]

Huang, M. Q.; Wang, L.; Pei, K.; You, W. B.; Yu, X. F.; Wu, Z. C.; Che, R. C. Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption. Small 2020, 16, 2000158.

[19]

Wang, L.; Qiu, H.; Song, P.; Zhang, Y. L.; Lu, Y. J.; Liang, C. B.; Kong, J.; Chen, L. X.; Gu, J. W. 3D Ti3C2Tx MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic interference shielding performances and robust mechanical properties. Compos. Part A: Appl. Sci. Manuf. 2019, 123, 293–300.

[20]
Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res., in press, https://doi.org/10.1007/s12274-022-5111-y.
[21]

Shu, J. C.; Yang, X. Y.; Zhang, X. R.; Huang, X. Y.; Cao, M. S.; Li, L.; Yang, H. J.; Cao, W. Q. Tailoring MOF-based materials to tune electromagnetic property for great microwave absorbers and devices. Carbon 2020, 162, 157–171.

[22]

Zhao, H. H.; Xu, X. Z.; Wang, Y. H.; Fan, D. G.; Liu, D. W.; Lin, K. F.; Xu, P.; Han, X. J.; Du, Y. C. Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against electromagnetic pollution. Small 2020, 16, 2003407.

[23]

Qiu, Y.; Yang, H. B.; Cheng, Y.; Wen, B.; Lin, Y. Structure design of Prussian blue analogue derived CoFe@C composite with tunable microwave absorption performance. Appl. Surf. Sci. 2022, 571, 151334.

[24]

Ren, L. G.; Wang, Y. Q.; Jia, Z. R.; He, Q. C.; Wu, G. L. Controlling the heterogeneous interfaces of Fe3O4/N-doped porous carbon via facile swelling for enhancing the electromagnetic wave absorption. Compos. Commun. 2022, 29, 101052.

[25]

Zhang, X.; Tian, X. L.; Liu, C.; Qiao, J.; Liu, W.; Liu, J. R.; Zeng, Z. H. MnCo-MOF-74 derived porous MnO/Co/C heterogeneous nanocomposites for high-efficiency electromagnetic wave absorption. Carbon 2022, 194, 257–266.

[26]

Quan, L.; Qin, F. X.; Estevez, D.; Wang, H.; Peng, H. X. Magnetic graphene for microwave absorbing application: Towards the lightest graphene-based absorber. Carbon 2017, 125, 630–639.

[27]

Tao, J. Q.; Tan, R. Y.; Xu, L. L.; Zhou, J. T.; Yao, Z. J.; Lei, Y. M.; Chen, P.; Li, Z.; Ou, J. Z. Ion-exchange strategy for metal-organic frameworks-derived composites with tunable hollow porous and microwave absorption. Small Methods 2022, 6, 2200429.

[28]

Tao, J. Q.; Zhou, J. T.; Yao, Z. J.; Jiao, Z. B.; Wei, B.; Tan, R. Y.; Li, Z. Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties. Carbon 2021, 172, 542–555.

[29]

Huang, T.; Wu, Z. C.; Yu, Q.; Tan, D. G.; Li, L. Preparation of hierarchically porous carbon/magnetic particle composites with broad microwave absorption bandwidth. Chem. Eng. J. 2019, 359, 69–78.

[30]

Li, Q. Q.; Liu, J. W.; Zhao, Y. H.; Zhao, X. B.; You, W. B.; Li, X.; Che, R. C. “Matryoshka doll”-like CeO2 microspheres with hierarchical structure to achieve significantly enhanced microwave absorption performance. ACS Appl. Mater. Interfaces 2018, 10, 27540–27547.

[31]

Liu, J.; Tao, J. Q.; Gao, L. L.; He, X. X.; Wei, B.; Gu, Y. S.; Yao, Z. J.; Zhou, J. T. Morphology-size synergy strategy of SiC@C nanoparticles towards lightweight and efficient microwave absorption. Chem. Eng. J. 2022, 433, 134484.

[32]

Sankaran, S.; Deshmukh, K.; Ahamed, M. B.; Pasha, S. K. K. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review. Compos. Part A: Appl. Sci. Manuf. 2018, 114, 49–71.

[33]

Cui, Y. H.; Yang, K.; Wang, J. Q.; Shah, T.; Zhang, Q. Y.; Zhang, B. L. Preparation of pleated RGO/MXene/Fe3O4 microsphere and its absorption properties for electromagnetic wave. Carbon 2021, 172, 1–14.

[34]

Zhang, M.; Qian, X.; Zeng, Q. W.; Zhang, Y. H.; Cao, H.; Che, R. C. Hollow microspheres of polypyrrole/magnetite/carbon nanotubes by spray-dry as an electromagnetic synergistic microwave absorber. Carbon 2021, 175, 499–508.

[35]

Lin, Y.; Dong, J. J.; Zong, H. W.; Wen, B.; Yang, H. B. Synthesis, characterization, and electromagnetic wave absorption properties of composites of reduced graphene oxide with porous LiFe5O8 microspheres. ACS Sustainable Chem. Eng. 2018, 6, 10011–10020.

[36]

Liu, P. J.; Yao, Z. J.; Zhou, J. T.; Yang, Z. H.; Kong, L. B. Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C 2016, 4, 9738–9749.

[37]

Yuan, H. R.; Yan, F.; Li, C. Y.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. Nickel nanoparticle encapsulated in few-layer nitrogen-doped graphene supported by nitrogen-doped graphite sheets as a high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 2018, 10, 1399–1407.

[38]

Jin, L. Q.; Yi, P. S.; Wan, L.; Hou, J. S.; Chen, P.; Zu, J. Q.; Wei, B.; Yao, Z. J.; Zhou, J. T. Thickness-controllable synthesis of MOF-derived Ni@N-doped carbon hexagonal nanoflakes with dielectric-magnetic synergy toward wideband electromagnetic wave absorption. Chem. Eng. J. 2022, 427, 130940.

[39]

Wen, G. S.; Zhao, X. C.; Liu, Y.; Zhang, H.; Wang, C. Facile synthesis of RGO/Co@Fe@Cu hollow nanospheres with efficient broadband electromagnetic wave absorption. Chem. Eng. J. 2019, 372, 1–11.

[40]

Liu, J. L.; Zhang, L. M.; Wu, H. J. Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption. Adv. Funct. Mater. 2022, 32, 2200544.

[41]

Zhao, B.; Shao, G.; Fan, B. B.; Zhao, W. Y.; Zhang, R. Fabrication and enhanced microwave absorption properties of Al2O3 nanoflake-coated Ni core-shell composite microspheres. RSC Adv. 2014, 4, 57424–57429.

[42]

Ma, M. L.; Li, W. T.; Tong, Z. Y.; Huang, W. B.; Wang, R. Z.; Lyu, P.; Ma, Y.; Wu, G. L.; Yan, Q.; Li, P. X. et al. Facile synthesis of the one-dimensional flower-like yolk–shell Fe3O4@SiO2@NiO nanochains composites for high-performance microwave absorption. J. Alloys Compds. 2020, 843, 155199.

[43]

Qin, M.; Lan, D.; Wu, G. L.; Qiao, X. G.; Wu, H. J. Sodium citrate assisted hydrothermal synthesis of nickel cobaltate absorbers with tunable morphology and complex dielectric parameters toward efficient electromagnetic wave absorption. Appl. Surf. Sci. 2020, 504, 144480.

[44]

Hou, T. Q.; Jia, Z. R.; Wang, B. B.; Li, H. B.; Liu, X. H.; Chi, Q. G.; Wu, G. L. Metal-organic framework-derived NiSe2-CoSe2@C/Ti3C2Tx composites as electromagnetic wave absorbers. Chem. Eng. J. 2021, 422, 130079.

[45]

Wang, B. L.; Chen, H. Y.; Wang, S.; Shi, Y.; Liu, X. D.; Fu, Y. G.; Liu, T. Construction of core–shell structured Co7Fe3@C nanocapsules with strong wideband microwave absorption at ultra-thin thickness. Carbon 2021, 184, 223–231.

[46]

Wu, Z. C.; Cheng, H. W.; Jin, C.; Yang, B. T.; Xu, C. Y.; Pei, K.; Zhang, H. B.; Yang, Z. Q.; Che, R. C. Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 2022, 34, 2107538.

[47]

Wu, N. N.; Xu, D. M.; Wang, Z.; Wang, F. L.; Liu, J. R.; Liu, W.; Shao, Q.; Liu, H.; Gao, Q.; Guo, Z. H. Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods. Carbon 2019, 145, 433–444.

[48]

Liu, W.; Shao, Q. W.; Ji, G. B.; Liang, X. H.; Cheng, Y.; Quan, B.; Du, Y. W. Metal-organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J. 2017, 313, 734–744.

[49]

Wei, S.; Chen, T.; Wang, Q.; Shi, Z. C.; Li, W.; Chen, S. G. Metal-organic framework derived hollow CoFe@C composites by the tunable chemical composition for efficient microwave absorption. J. Colloid Interface Sci. 2021, 593, 370–379.

[50]

Zhang, X.; Yan, F.; Zhang, S.; Yuan, H. R.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. Hollow N-doped carbon polyhedron containing CoNi alloy nanoparticles embedded within few-layer N-doped graphene as high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 2018, 10, 24920–24929.

[51]

Zhang, X. M.; Ji, G. B.; Liu, W.; Quan, B.; Liang, X. H.; Shang, C. M.; Cheng, Y.; Du, Y. W. Thermal conversion of an Fe3O4@metal-organic framework: A new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material. Nanoscale 2015, 7, 12932–12942.

[52]

Liu, W.; Liu, L.; Ji, G. B.; Li, D. R.; Zhang, Y. N.; Ma, J. N.; Du, Y. W. Composition design and structural characterization of MOF-derived composites with controllable electromagnetic properties. ACS Sustainable Chem. Eng. 2017, 5, 7961–7971.

[53]

Liu, W.; Liu, J. C.; Yang, Z. H.; Ji, G. B. Extended working frequency of ferrites by synergistic attenuation through a controllable carbothermal route based on Prussian blue shell. ACS Appl. Mater. Interfaces 2018, 10, 28887–28897.

[54]

Zeng, X. J.; Yang, B.; Zhu, L. Y.; Yang, H. Z.; Yu, R. H. Structure evolution of Prussian blue analogues to CoFe@C core–shell nanocomposites with good microwave absorbing performances. RSC Adv. 2016, 6, 105644–105652.

[55]

Wang, L. X.; Guan, Y. K.; Qiu, X.; Zhu, H. L.; Pan, S. B.; Yu, M. X.; Zhang, Q. T. Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@metal-organic framework. Chem. Eng. J. 2017, 326, 945–955.

[56]

Chai, L.; Wang, Y. Q.; Jia, Z. R.; Liu, Z. X.; Zhou, S. Y.; He, Q. C.; Du, H. Y.; Wu, G. L. Tunable defects and interfaces of hierarchical dandelion-like NiCo2O4 via Ostwald ripening process for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 2022, 429, 132547.

[57]

Chen, X. T.; Zhou, M.; Zhao, Y.; Gu, W. H.; Wu, Y.; Tang, S. L.; Ji, G. B. Morphology control of eco-friendly chitosan-derived carbon aerogels for efficient microwave absorption at thin thickness and thermal stealth. Green Chem. 2022, 24, 5280–5290.

[58]

Huang, X. G.; Yu, G. Y.; Zhang, Y. K.; Zhang, M. J.; Shao, G. F. Design of cellular structure of graphene aerogels for electromagnetic wave absorption. Chem. Eng. J. 2021, 426, 131894.

Nano Research
Pages 1859-1868
Cite this article:
Wu D, Wang Y, Deng S, et al. Heterostructured CoFe@N-doped carbon porous polyhedron for efficient microwave absorption. Nano Research, 2023, 16(2): 1859-1868. https://doi.org/10.1007/s12274-022-5341-z
Topics:
Part of a topical collection:

9397

Views

31

Crossref

93

Web of Science

93

Scopus

3

CSCD

Altmetrics

Received: 02 November 2022
Revised: 17 November 2022
Accepted: 18 November 2022
Published: 23 December 2022
© Tsinghua University Press 2022
Return