Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Synthesis of silicone blocked bio-polyurethane and its application in highly stretchable fiber-shaped strain sensor

Zhanxu Liu1,§Chenchen Li1,§Xiaofeng Zhang1Hongxing Xu1Yanfen Zhou1()Mingwei Tian1Shaojuan Chen1Stephen Jerrams2Feng-Lei Zhou1,3Liang Jiang1()
College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
Centre for Elastomer Research, Technological University Dublin (TU Dublin), Dublin D08 NF82, Ireland
Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK

§ Zhanxu Liu and Chenchen Li contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
A silicone blocked polyurethane (Si-BPU) with high stretchability and degradability was synthesized. Fibrous strain sensors were fabricated by Si-BPU and carbon nanotubes (CNTs), and applied for monitoring tiny and large human body movements.

Abstract

Flexible strain sensors have become a key component of intelligent wearable electronics. However, the fabrication of strain sensors with wide workable strain ranges and high sensitivity remains a great challenge. Additionally, the rapid development of polymer composites based strain sensors has produced a large amount of e-waste. Therefore, the development of strain sensors with wide strain sensing ranges and high sensitivity based on degradable materials is necessary. In this work, a silicone blocked polyurethane (Si-BPU) with high stretchability and degradability was synthesized and composited with carbon nanotubes (CNTs) to fabricate fibrous strain sensors. The synthesized 0.5% Si-BPU exhibited good biodegradability with a weight loss of 16.47% in 42 days. The Si-BPU/12CNTs fiber based strain sensor achieved a sensing range of 0%–353.3% strain, gauge factor (GF) of 206.3 at 250% strain and of 4,513.2 at 353.3% strain, and reliable stability under 10,000 repeated stretching–releasing cycles. Moreover, the Si-BPU/12CNTs strain sensor showed rapid response time (< 163 ms) and was capable of monitoring various human body movements (elbow bending, finger bending, breath, and swallow). In consequence, this work provides a new and effective strategy for the development of sustainable wearable electronic devices.

Electronic Supplementary Material

Download File(s)
12274_2022_5344_MOESM1_ESM.pdf (1.3 MB)

References

[1]

Shen, Z. R.; Liu, F. M.; Huang, S.; Wang, H.; Yang, C.; Hang, T.; Tao, J.; Xia, W. H.; Xie, X. Progress of flexible strain sensors for physiological signal monitoring. Biosens. Bioelectron. 2022, 211, 114298.

[2]

Zhu, M. M.; Li, J. L.; Yu, J. Y.; Li, Z. L.; Ding, B. Superstable and intrinsically self-healing fibrous membrane with bionic confined protective structure for breathable electronic skin. Angew. Chem., Int. Ed. 2022, 61, e202200226.

[3]

Zhou, W. X.; Li, Y.; Li, P.; Chen, J.; Xu, R. Q.; Yao, S. S.; Cui, Z.; Booth, R.; Mi, B. X.; Wang, D. et al. Metal mesh as a transparent omnidirectional strain sensor. Adv. Mater. Technol. 2019, 4, 1800698.

[4]

Cai, S. Y.; Xu, C. S.; Jiang, D. F.; Yuan, M. L.; Zhang, Q. W.; Li, Z. L.; Wang, Y. Air-permeable electrode for highly sensitive and noninvasive glucose monitoring enabled by graphene fiber fabrics. Nano Energy 2022, 93, 106904.

[5]

Li, W. Y.; Zhou, Y. F.; Wang, Y. H.; Jiang, L.; Ma, J. W.; Chen, S. J.; Zhou, F. L. Core–sheath fiber-based wearable strain sensorwith high stretchability and sensitivity for detecting human motion. Adv. Electron. Mater. 2021, 7, 2000865.

[6]

Liu, H.; Chen, X. Y.; Zheng, Y. J.; Zhang, D. B.; Zhao, Y.; Wang, C. F.; Pan, C. F.; Liu, C. T.; Shen, C. Y. Lightweight, superelastic, and hydrophobic polyimide nanofiber/MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications. Adv. Funct. Mater. 2021, 31, 2008006.

[7]

Wang, Y. B.; Zhu, M. M.; Wei, X. D.; Yu, J. Y.; Li, Z. L.; Ding, B. A dual-mode electronic skin textile for pressure and temperature sensing. Chem. Eng. J. 2021, 425, 130599.

[8]

Zhou, B. Z.; Liu, Z. X.; Li, C. C.; Liu, M. S.; Jiang, L.; Zhou, Y. F.; Zhou, F. L.; Chen, S. J.; Jerrams, S.; Yu, J. Y. A highly stretchable and sensitive strain sensor based on dopamine modified electrospun SEBS fibers and MWCNTs with carboxylation. Adv. Electron. Mater. 2021, 7, 2100233.

[9]

Kim, H. J.; Thukral, A.; Yu, C. J. Highly sensitive and very stretchable strain sensor based on a rubbery semiconductor. ACS Appl. Mater. Interfaces 2018, 10, 5000–5006.

[10]

Cetin, M. S.; Toprakci, H. A. K. Flexible electronics from hybrid nanocomposites and their application as piezoresistive strain sensors. Compos. Part B Eng. 2021, 224, 109199.

[11]

Yu, S. L.; Wang, X. P.; Xiang, H. X.; Zhu, L. P.; Tebyetekerwa, M.; Zhu, M. F. Superior piezoresistive strain sensing behaviors of carbon nanotubes in one-dimensional polymer fiber structure. Carbon 2018, 140, 1–9.

[12]

Cui, X. H.; Jiang, Y.; Xu, Z. G.; Xi, M.; Jiang, Y.; Song, P. G.; Zhao, Y.; Wang, H. Stretchable strain sensors with dentate groove structure for enhanced sensing recoverability. Compos. Part B Eng. 2021, 211, 108641.

[13]

Yu, Y. F.; Zhai, Y.; Yun, Z. G.; Zhai, W.; Wang, X. Z.; Zheng, G. Q.; Yan, C.; Dai, K.; Liu, C. T.; Shen, C. Y. Ultra-stretchable porous fiber-shaped strain sensor with exponential response in full sensing range and excellent anti-interference ability toward buckling, torsion, temperature, and humidity. Adv. Electron. Mater. 2019, 5, 1900538.

[14]

Zhu, G. X.; Li, H.; Peng, M. L.; Zhao, G. Y.; Chen, J. W.; Zhu, Y. T. Highly-stretchable porous thermoplastic polyurethane/carbon nanotubes composites as a multimodal sensor. Carbon 2022, 195, 364–371.

[15]

Cai, J. Y.; Du, M. J.; Li, Z. L. Flexible temperature sensors constructed with fiber materials. Adv. Mater. Technol. 2022, 7, 2101182.

[16]

Zhang, S. D.; Sun, K.; Liu, H.; Chen, X. Y.; Zheng, Y. J.; Shi, X. Z.; Zhang, D. B.; Mi, L. W.; Liu, C. T.; Shen, C. Y. Enhanced piezoresistive performance of conductive WPU/CNT composite foam through incorporating brittle cellulose nanocrystal. Chem. Eng. J. 2020, 387, 124045.

[17]

Kumar, S.; Gupta, T. K.; Varadarajan, K. M. Strong, stretchable and ultrasensitive MWCNT/TPU nanocomposites for piezoresistive strain sensing. Compos. Part B Eng. 2019, 177, 107285.

[18]

He, Z. L.; Zhou, G. H.; Byun, J. H.; Lee, S. K.; Um, M. K.; Park, B.; Kim, T.; Lee, S. B.; Chou, T. W. Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors. Nanoscale 2019, 11, 5884–5890.

[19]

Gao, J. C.; Wang, X. Z.; Zhai, W.; Liu, H.; Zheng, G. Q.; Dai, K.; Mi, L. W.; Liu, C. T.; Shen, C. Y. Ultrastretchable multilayered fiber with a hollow-monolith structure for high-performance strain sensor. ACS Appl. Mater. Interfaces 2018, 10, 34592–34603.

[20]

Liu, Z. X.; Li, C. C.; Zhang, X. F.; Zhou, B. Z.; Wen, S. P.; Zhou, Y. F.; Chen, S. J.; Jiang, L.; Jerrams, S.; Zhou, F. L. Biodegradable polyurethane fiber-based strain sensor with a broad sensing range and high sensitivity for human motion monitoring. ACS Sustainable Chem. Eng. 2022, 10, 8788–8798.

[21]

Yang, Z. H.; Wu, G. F. Synthetic scheme to improve the solid content of biodegradable waterborne polyurethane by changing the association relationships of hydrophilic fragments. RSC Adv. 2020, 10, 28680–28694.

[22]

Liu, Z. X.; Zhou, B. Z.; Li, C. C.; Wang, Y. H.; Wen, S. P.; Zhou, Y. F.; Jiang, L.; Zhou, F. L.; Betts, A.; Jerrams, S. Printable dielectric elastomers of high electromechanical properties based on SEBS ink incorporated with polyphenols modified dielectric particles. Eur. Polymer J. 2021, 159, 110730.

[23]

Liu, C. H.; Lee, H. T.; Tsou, C. H.; Wang, C. C.; Gu, J. H.; Suen, M. C. Preparation and characterization of biodegradable polyurethane composites containing oyster shell powder. Polymer Bull. 2020, 77, 3325–3347.

[24]

Magnin, A.; Pollet, E.; Phalip, V.; Avérous, L. Evaluation of biological degradation of polyurethanes. Biotechnol. Adv. 2020, 39, 107457.

[25]

Pike, G. E.; Seager, C. H. Percolation and conductivity: A computer study. I. Phys. Rev. B 1974, 10, 1421–1434.

[26]

Lv, Z.; Huang, X.; Fan, D. Y.; Zhou, P.; Luo, Y. Y.; Zhang, X. X. Scalable manufacturing of conductive rubber nanocomposites with ultralow percolation threshold for strain sensing applications. Compos. Commun. 2021, 25, 100685.

[27]

Ren, M. N.; Zhou, Y. J.; Wang, Y.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. Highly stretchable and durable strain sensor based on carbon nanotubes decorated thermoplastic polyurethane fibrous network with aligned wave-like structure. Chem. Eng. J. 2019, 360, 762–777.

[28]

Yue, X. Y.; Jia, Y. Y.; Wang, X. Z.; Zhou, K. K.; Zhai, W.; Zheng, G. Q.; Dai, K.; Mi, L. W.; Liu, C. T.; Shen, C. Y. Highly stretchable and durable fiber-shaped strain sensor with porous core–sheath structure for human motion monitoring. Compos. Sci. Technol. 2020, 189, 108038.

[29]

Lee, C.; Jug, L.; Meng, E. High strain biocompatible polydimethylsiloxane-based conductive graphene and multiwalled carbon nanotube nanocomposite strain sensors. Appl. Phys. Lett. 2013, 102, 183511.

[30]

Xu, S. H.; Fan, Z.; Li, C. W.; Wang, P.; Sammed, K. A.; Pan, L. J. Investigation of strain sensing mechanisms on ultra-thin carbon nanotube networks with different densities. Carbon 2019, 155, 421–431.

[31]

Liu, L. P.; Niu, S. C.; Zhang, J. Q.; Mu, Z. Z.; Li, J.; Li, B.; Meng, X. C.; Zhang, C. C.; Wang, Y. Q.; Hou, T. et al. Bioinspired, omnidirectional, and hypersensitive flexible strain sensors. Adv. Mater. 2022, 34, 2200823.

[32]

Sun, H. L.; Dai, K.; Zhai, W.; Zhou, Y. J.; Li, J. W.; Zheng, G. Q.; Li, B.; Liu, C. T.; Shen, C. Y. A highly sensitive and stretchable yarn strain sensor for human motion tracking utilizing a wrinkle-assisted crack structure. ACS Appl. Mater. Interfaces 2019, 11, 36052–36062.

[33]

Dong, H.; Sun, J. C.; Liu, X. M.; Jiang, X. D.; Lu, S. W. Highly sensitive and stretchable MXene/CNTs/TPU composite strain sensor with bilayer conductive structure for human motion detection. ACS Appl. Mater. Interfaces 2022, 14, 15504–15516.

[34]

Zhu, L.; Zhou, X.; Liu, Y. H.; Fu, Q. Highly sensitive, ultrastretchable strain sensors prepared by pumping hybrid fillers of carbon nanotubes/cellulose nanocrystal into electrospun polyurethane membranes. ACS Appl. Mater. Interfaces 2019, 11, 12968–12977.

[35]

Fu, Q. Q.; Zhou, T.; Chen, Y.; Xiao, J. L.; Xu, J. X.; Pan, Z.; Feng, X. Homogeneity permitted robust connection for additive manufacturing stretchable electronics. ACS Appl. Mater. Interfaces 2020, 12, 43152–43159.

[36]

Huang, T.; He, P.; Wang, R. R.; Yang, S. W.; Sun, J.; Xie, X. M.; Ding, G. Q. Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive strain sensors. Adv. Funct. Mater. 2019, 29, 1903732.

[37]

Wen, L.; Nie, M.; Wang, C. Q.; Zhao, Y. N.; Yin, K. B.; Sun, L. T. Multifunctional, light-weight wearable sensor based on 3D porous polyurethane sponge coated with MXene and carbon nanotubes composites. Adv. Mater. Interfaces 2022, 9, 2101592.

[38]

Wang, Y. H.; Li, W. Y.; Li, C. C.; Zhou, B. Z.; Zhou, Y. F.; Jiang, L.; Wen, S. P.; Zhou, F. L. Fabrication of ultra-high working range strain sensor using carboxyl CNTs coated electrospun TPU assisted with dopamine. Appl. Surf. Sci. 2021, 566, 150705.

[39]

Niu, B.; Yang, S.; Tian, X.; Hua, T. Highly sensitive and stretchable fiber strain sensors empowered by synergetic conductive network of silver nanoparticles and carbon nanotubes. Appl. Mater Today 2021, 25, 101221.

[40]

He, Z.; Byun, J. H.; Zhou, G. H.; Park, B. J.; Kim, T. H.; Lee, S. B.; Yi, J. W.; Um, M. K.; Chou, T. W. Effect of MWCNT content on the mechanical and strain–sensing performance of thermoplastic polyurethane composite fibers. Carbon 2019, 146, 701–708.

[41]

Wang, Y. L.; Hao, J.; Huang, Z. Q.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring. Carbon 2018, 126, 360–371.

[42]

Wang, X. Z.; Sun, H. L.; Yue, X. Y.; Yu, Y. F.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. A highly stretchable carbon nanotubes/thermoplastic polyurethane fiber-shaped strain sensor with porous structure for human motion monitoring. Compos. Sci. Technol. 2018, 168, 126–132.

[43]

Wang, X.; Sparkman, J.; Gou, J. H. Strain sensing of printed carbon nanotube sensors on polyurethane substrate with spray deposition modeling. Compos. Commun. 2017, 3, 1–6.

[44]

Zheng, Y. J.; Li, Y. L.; Dai, K.; Liu, M. R.; Zhou, K. K.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y. Conductive thermoplastic polyurethane composites with tunable piezoresistivity by modulating the filler dimensionality for flexible strain sensors. Compos. Part A Appl. Sci. Manuf. 2017, 101, 41–49.

[45]

Pan, J. J.; Hao, B. W.; Song, W. F.; Chen, S. X.; Li, D. Q.; Luo, L.; Xia, Z. G.; Cheng, D. S.; Xu, A. C.; Cai, G. M. et al. Highly sensitive and durable wearable strain sensors from a core-sheath nanocomposite yarn. Compos. Part B Eng. 2020, 183, 107683.

[46]

Liu, K.; Yang, C.; Song, L. H.; Wang, Y.; Wei, Q.; Alamusi, Deng, Q. B.; Hu, N. Highly stretchable, superhydrophobic and wearable strain sensors based on the laser-irradiated PDMS/CNT composite. Compos. Sci. Technol. 2022, 218, 109148.

[47]

Li, Q. M.; Yin, R.; Zhang, D. B.; Liu, H.; Chen, X. Y.; Zheng, Y. J.; Guo, Z. H.; Liu, C. T.; Shen, C. Y. Flexible conductive MXene/cellulose nanocrystal coated nonwoven fabrics for tunable wearable strain/pressure sensors. J. Mater. Chem. A 2020, 8, 21131–21141.

[48]

Li, G. J.; Dai, K.; Ren, M. N.; Wang, Y.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y. Aligned flexible conductive fibrous networks for highly sensitive, ultrastretchable and wearable strain sensors. J. Mater. Chem. C 2018, 6, 6575–6583.

[49]

Wang, Y. H.; Li, W. Y.; Zhou, Y. F.; Jiang, L.; Ma, J. W.; Chen, S. J.; Jerrams, S.; Zhou, F. L. Fabrication of high-performance wearable strain sensors by using CNTs-coated electrospun polyurethane nanofibers. J. Mater. Sci. 2020, 55, 12592–12606.

[50]

Duan, L. Y.; Fu, S. R.; Deng, H.; Zhang, Q.; Wang, K.; Chen, F.; Fu, Q. The resistivity–strain behavior of conductive polymer composites: Stability and sensitivity. J. Mater. Chem. A 2014, 2, 17085–17098.

[51]

Wang, Y. L.; Jia, Y. Y.; Zhou, Y. J.; Wang, Y.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. Ultra-stretchable, sensitive and durable strain sensors based on polydopamine encapsulated carbon nanotubes/elastic bands. J. Mater. Chem. C 2018, 6, 8160–8170.

[52]

Wang, X. P.; Meng, S.; Tebyetekerwa, M.; Li, Y. L.; Pionteck, J.; Sun, B.; Qin, Z. Y.; Zhu, M. F. Highly sensitive and stretchable piezoresistive strain sensor based on conductive poly(styrene-butadiene-styrene)/few layer graphene composite fiber. Compos. Part A Appl. Sci. Manuf. 2018, 105, 291–299.

[53]

Lu, X. Y.; Si, Y.; Zhang, S. C.; Yu, J. Y.; Ding, B. In situ synthesis of mechanically robust, transparent nanofiber-reinforced hydrogels for highly sensitive multiple sensing. Adv. Funct. Mater. 2021, 31, 2103117.

[54]

Liu, H.; Huang, W. J.; Gao, J. C.; Dai, K.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y.; Yan, X. R.; Guo, J.; Guo, Z. H. Piezoresistive behavior of porous carbon nanotube-thermoplastic polyurethane conductive nanocomposites with ultrahigh compressibility. Appl. Phys. Lett. 2016, 108, 011904.

[55]

Li, X. T.; Koh, K. H.; Xue, J. Q.; So, C. H.; Xiao, N.; Tin, C.; Wai, K.; Lai, C. 1D-2D nanohybrid-based textile strain sensor to boost multiscale deformative motion sensing performance. Nano Res. 2022, 15, 8398–8409.

Nano Research
Pages 7982-7990
Cite this article:
Liu Z, Li C, Zhang X, et al. Synthesis of silicone blocked bio-polyurethane and its application in highly stretchable fiber-shaped strain sensor. Nano Research, 2023, 16(5): 7982-7990. https://doi.org/10.1007/s12274-022-5344-9
Topics:
Metrics & Citations  
Article History
Copyright
Return