Graphical Abstract

Flexible strain sensors have become a key component of intelligent wearable electronics. However, the fabrication of strain sensors with wide workable strain ranges and high sensitivity remains a great challenge. Additionally, the rapid development of polymer composites based strain sensors has produced a large amount of e-waste. Therefore, the development of strain sensors with wide strain sensing ranges and high sensitivity based on degradable materials is necessary. In this work, a silicone blocked polyurethane (Si-BPU) with high stretchability and degradability was synthesized and composited with carbon nanotubes (CNTs) to fabricate fibrous strain sensors. The synthesized 0.5% Si-BPU exhibited good biodegradability with a weight loss of 16.47% in 42 days. The Si-BPU/12CNTs fiber based strain sensor achieved a sensing range of 0%–353.3% strain, gauge factor (GF) of 206.3 at 250% strain and of 4,513.2 at 353.3% strain, and reliable stability under 10,000 repeated stretching–releasing cycles. Moreover, the Si-BPU/12CNTs strain sensor showed rapid response time (< 163 ms) and was capable of monitoring various human body movements (elbow bending, finger bending, breath, and swallow). In consequence, this work provides a new and effective strategy for the development of sustainable wearable electronic devices.
Shen, Z. R.; Liu, F. M.; Huang, S.; Wang, H.; Yang, C.; Hang, T.; Tao, J.; Xia, W. H.; Xie, X. Progress of flexible strain sensors for physiological signal monitoring. Biosens. Bioelectron. 2022, 211, 114298.
Zhu, M. M.; Li, J. L.; Yu, J. Y.; Li, Z. L.; Ding, B. Superstable and intrinsically self-healing fibrous membrane with bionic confined protective structure for breathable electronic skin. Angew. Chem., Int. Ed. 2022, 61, e202200226.
Zhou, W. X.; Li, Y.; Li, P.; Chen, J.; Xu, R. Q.; Yao, S. S.; Cui, Z.; Booth, R.; Mi, B. X.; Wang, D. et al. Metal mesh as a transparent omnidirectional strain sensor. Adv. Mater. Technol. 2019, 4, 1800698.
Cai, S. Y.; Xu, C. S.; Jiang, D. F.; Yuan, M. L.; Zhang, Q. W.; Li, Z. L.; Wang, Y. Air-permeable electrode for highly sensitive and noninvasive glucose monitoring enabled by graphene fiber fabrics. Nano Energy 2022, 93, 106904.
Li, W. Y.; Zhou, Y. F.; Wang, Y. H.; Jiang, L.; Ma, J. W.; Chen, S. J.; Zhou, F. L. Core–sheath fiber-based wearable strain sensorwith high stretchability and sensitivity for detecting human motion. Adv. Electron. Mater. 2021, 7, 2000865.
Liu, H.; Chen, X. Y.; Zheng, Y. J.; Zhang, D. B.; Zhao, Y.; Wang, C. F.; Pan, C. F.; Liu, C. T.; Shen, C. Y. Lightweight, superelastic, and hydrophobic polyimide nanofiber/MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications. Adv. Funct. Mater. 2021, 31, 2008006.
Wang, Y. B.; Zhu, M. M.; Wei, X. D.; Yu, J. Y.; Li, Z. L.; Ding, B. A dual-mode electronic skin textile for pressure and temperature sensing. Chem. Eng. J. 2021, 425, 130599.
Zhou, B. Z.; Liu, Z. X.; Li, C. C.; Liu, M. S.; Jiang, L.; Zhou, Y. F.; Zhou, F. L.; Chen, S. J.; Jerrams, S.; Yu, J. Y. A highly stretchable and sensitive strain sensor based on dopamine modified electrospun SEBS fibers and MWCNTs with carboxylation. Adv. Electron. Mater. 2021, 7, 2100233.
Kim, H. J.; Thukral, A.; Yu, C. J. Highly sensitive and very stretchable strain sensor based on a rubbery semiconductor. ACS Appl. Mater. Interfaces 2018, 10, 5000–5006.
Cetin, M. S.; Toprakci, H. A. K. Flexible electronics from hybrid nanocomposites and their application as piezoresistive strain sensors. Compos. Part B Eng. 2021, 224, 109199.
Yu, S. L.; Wang, X. P.; Xiang, H. X.; Zhu, L. P.; Tebyetekerwa, M.; Zhu, M. F. Superior piezoresistive strain sensing behaviors of carbon nanotubes in one-dimensional polymer fiber structure. Carbon 2018, 140, 1–9.
Cui, X. H.; Jiang, Y.; Xu, Z. G.; Xi, M.; Jiang, Y.; Song, P. G.; Zhao, Y.; Wang, H. Stretchable strain sensors with dentate groove structure for enhanced sensing recoverability. Compos. Part B Eng. 2021, 211, 108641.
Yu, Y. F.; Zhai, Y.; Yun, Z. G.; Zhai, W.; Wang, X. Z.; Zheng, G. Q.; Yan, C.; Dai, K.; Liu, C. T.; Shen, C. Y. Ultra-stretchable porous fiber-shaped strain sensor with exponential response in full sensing range and excellent anti-interference ability toward buckling, torsion, temperature, and humidity. Adv. Electron. Mater. 2019, 5, 1900538.
Zhu, G. X.; Li, H.; Peng, M. L.; Zhao, G. Y.; Chen, J. W.; Zhu, Y. T. Highly-stretchable porous thermoplastic polyurethane/carbon nanotubes composites as a multimodal sensor. Carbon 2022, 195, 364–371.
Cai, J. Y.; Du, M. J.; Li, Z. L. Flexible temperature sensors constructed with fiber materials. Adv. Mater. Technol. 2022, 7, 2101182.
Zhang, S. D.; Sun, K.; Liu, H.; Chen, X. Y.; Zheng, Y. J.; Shi, X. Z.; Zhang, D. B.; Mi, L. W.; Liu, C. T.; Shen, C. Y. Enhanced piezoresistive performance of conductive WPU/CNT composite foam through incorporating brittle cellulose nanocrystal. Chem. Eng. J. 2020, 387, 124045.
Kumar, S.; Gupta, T. K.; Varadarajan, K. M. Strong, stretchable and ultrasensitive MWCNT/TPU nanocomposites for piezoresistive strain sensing. Compos. Part B Eng. 2019, 177, 107285.
He, Z. L.; Zhou, G. H.; Byun, J. H.; Lee, S. K.; Um, M. K.; Park, B.; Kim, T.; Lee, S. B.; Chou, T. W. Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors. Nanoscale 2019, 11, 5884–5890.
Gao, J. C.; Wang, X. Z.; Zhai, W.; Liu, H.; Zheng, G. Q.; Dai, K.; Mi, L. W.; Liu, C. T.; Shen, C. Y. Ultrastretchable multilayered fiber with a hollow-monolith structure for high-performance strain sensor. ACS Appl. Mater. Interfaces 2018, 10, 34592–34603.
Liu, Z. X.; Li, C. C.; Zhang, X. F.; Zhou, B. Z.; Wen, S. P.; Zhou, Y. F.; Chen, S. J.; Jiang, L.; Jerrams, S.; Zhou, F. L. Biodegradable polyurethane fiber-based strain sensor with a broad sensing range and high sensitivity for human motion monitoring. ACS Sustainable Chem. Eng. 2022, 10, 8788–8798.
Yang, Z. H.; Wu, G. F. Synthetic scheme to improve the solid content of biodegradable waterborne polyurethane by changing the association relationships of hydrophilic fragments. RSC Adv. 2020, 10, 28680–28694.
Liu, Z. X.; Zhou, B. Z.; Li, C. C.; Wang, Y. H.; Wen, S. P.; Zhou, Y. F.; Jiang, L.; Zhou, F. L.; Betts, A.; Jerrams, S. Printable dielectric elastomers of high electromechanical properties based on SEBS ink incorporated with polyphenols modified dielectric particles. Eur. Polymer J. 2021, 159, 110730.
Liu, C. H.; Lee, H. T.; Tsou, C. H.; Wang, C. C.; Gu, J. H.; Suen, M. C. Preparation and characterization of biodegradable polyurethane composites containing oyster shell powder. Polymer Bull. 2020, 77, 3325–3347.
Magnin, A.; Pollet, E.; Phalip, V.; Avérous, L. Evaluation of biological degradation of polyurethanes. Biotechnol. Adv. 2020, 39, 107457.
Pike, G. E.; Seager, C. H. Percolation and conductivity: A computer study. I. Phys. Rev. B 1974, 10, 1421–1434.
Lv, Z.; Huang, X.; Fan, D. Y.; Zhou, P.; Luo, Y. Y.; Zhang, X. X. Scalable manufacturing of conductive rubber nanocomposites with ultralow percolation threshold for strain sensing applications. Compos. Commun. 2021, 25, 100685.
Ren, M. N.; Zhou, Y. J.; Wang, Y.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. Highly stretchable and durable strain sensor based on carbon nanotubes decorated thermoplastic polyurethane fibrous network with aligned wave-like structure. Chem. Eng. J. 2019, 360, 762–777.
Yue, X. Y.; Jia, Y. Y.; Wang, X. Z.; Zhou, K. K.; Zhai, W.; Zheng, G. Q.; Dai, K.; Mi, L. W.; Liu, C. T.; Shen, C. Y. Highly stretchable and durable fiber-shaped strain sensor with porous core–sheath structure for human motion monitoring. Compos. Sci. Technol. 2020, 189, 108038.
Lee, C.; Jug, L.; Meng, E. High strain biocompatible polydimethylsiloxane-based conductive graphene and multiwalled carbon nanotube nanocomposite strain sensors. Appl. Phys. Lett. 2013, 102, 183511.
Xu, S. H.; Fan, Z.; Li, C. W.; Wang, P.; Sammed, K. A.; Pan, L. J. Investigation of strain sensing mechanisms on ultra-thin carbon nanotube networks with different densities. Carbon 2019, 155, 421–431.
Liu, L. P.; Niu, S. C.; Zhang, J. Q.; Mu, Z. Z.; Li, J.; Li, B.; Meng, X. C.; Zhang, C. C.; Wang, Y. Q.; Hou, T. et al. Bioinspired, omnidirectional, and hypersensitive flexible strain sensors. Adv. Mater. 2022, 34, 2200823.
Sun, H. L.; Dai, K.; Zhai, W.; Zhou, Y. J.; Li, J. W.; Zheng, G. Q.; Li, B.; Liu, C. T.; Shen, C. Y. A highly sensitive and stretchable yarn strain sensor for human motion tracking utilizing a wrinkle-assisted crack structure. ACS Appl. Mater. Interfaces 2019, 11, 36052–36062.
Dong, H.; Sun, J. C.; Liu, X. M.; Jiang, X. D.; Lu, S. W. Highly sensitive and stretchable MXene/CNTs/TPU composite strain sensor with bilayer conductive structure for human motion detection. ACS Appl. Mater. Interfaces 2022, 14, 15504–15516.
Zhu, L.; Zhou, X.; Liu, Y. H.; Fu, Q. Highly sensitive, ultrastretchable strain sensors prepared by pumping hybrid fillers of carbon nanotubes/cellulose nanocrystal into electrospun polyurethane membranes. ACS Appl. Mater. Interfaces 2019, 11, 12968–12977.
Fu, Q. Q.; Zhou, T.; Chen, Y.; Xiao, J. L.; Xu, J. X.; Pan, Z.; Feng, X. Homogeneity permitted robust connection for additive manufacturing stretchable electronics. ACS Appl. Mater. Interfaces 2020, 12, 43152–43159.
Huang, T.; He, P.; Wang, R. R.; Yang, S. W.; Sun, J.; Xie, X. M.; Ding, G. Q. Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive strain sensors. Adv. Funct. Mater. 2019, 29, 1903732.
Wen, L.; Nie, M.; Wang, C. Q.; Zhao, Y. N.; Yin, K. B.; Sun, L. T. Multifunctional, light-weight wearable sensor based on 3D porous polyurethane sponge coated with MXene and carbon nanotubes composites. Adv. Mater. Interfaces 2022, 9, 2101592.
Wang, Y. H.; Li, W. Y.; Li, C. C.; Zhou, B. Z.; Zhou, Y. F.; Jiang, L.; Wen, S. P.; Zhou, F. L. Fabrication of ultra-high working range strain sensor using carboxyl CNTs coated electrospun TPU assisted with dopamine. Appl. Surf. Sci. 2021, 566, 150705.
Niu, B.; Yang, S.; Tian, X.; Hua, T. Highly sensitive and stretchable fiber strain sensors empowered by synergetic conductive network of silver nanoparticles and carbon nanotubes. Appl. Mater Today 2021, 25, 101221.
He, Z.; Byun, J. H.; Zhou, G. H.; Park, B. J.; Kim, T. H.; Lee, S. B.; Yi, J. W.; Um, M. K.; Chou, T. W. Effect of MWCNT content on the mechanical and strain–sensing performance of thermoplastic polyurethane composite fibers. Carbon 2019, 146, 701–708.
Wang, Y. L.; Hao, J.; Huang, Z. Q.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring. Carbon 2018, 126, 360–371.
Wang, X. Z.; Sun, H. L.; Yue, X. Y.; Yu, Y. F.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. A highly stretchable carbon nanotubes/thermoplastic polyurethane fiber-shaped strain sensor with porous structure for human motion monitoring. Compos. Sci. Technol. 2018, 168, 126–132.
Wang, X.; Sparkman, J.; Gou, J. H. Strain sensing of printed carbon nanotube sensors on polyurethane substrate with spray deposition modeling. Compos. Commun. 2017, 3, 1–6.
Zheng, Y. J.; Li, Y. L.; Dai, K.; Liu, M. R.; Zhou, K. K.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y. Conductive thermoplastic polyurethane composites with tunable piezoresistivity by modulating the filler dimensionality for flexible strain sensors. Compos. Part A Appl. Sci. Manuf. 2017, 101, 41–49.
Pan, J. J.; Hao, B. W.; Song, W. F.; Chen, S. X.; Li, D. Q.; Luo, L.; Xia, Z. G.; Cheng, D. S.; Xu, A. C.; Cai, G. M. et al. Highly sensitive and durable wearable strain sensors from a core-sheath nanocomposite yarn. Compos. Part B Eng. 2020, 183, 107683.
Liu, K.; Yang, C.; Song, L. H.; Wang, Y.; Wei, Q.; Alamusi, Deng, Q. B.; Hu, N. Highly stretchable, superhydrophobic and wearable strain sensors based on the laser-irradiated PDMS/CNT composite. Compos. Sci. Technol. 2022, 218, 109148.
Li, Q. M.; Yin, R.; Zhang, D. B.; Liu, H.; Chen, X. Y.; Zheng, Y. J.; Guo, Z. H.; Liu, C. T.; Shen, C. Y. Flexible conductive MXene/cellulose nanocrystal coated nonwoven fabrics for tunable wearable strain/pressure sensors. J. Mater. Chem. A 2020, 8, 21131–21141.
Li, G. J.; Dai, K.; Ren, M. N.; Wang, Y.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y. Aligned flexible conductive fibrous networks for highly sensitive, ultrastretchable and wearable strain sensors. J. Mater. Chem. C 2018, 6, 6575–6583.
Wang, Y. H.; Li, W. Y.; Zhou, Y. F.; Jiang, L.; Ma, J. W.; Chen, S. J.; Jerrams, S.; Zhou, F. L. Fabrication of high-performance wearable strain sensors by using CNTs-coated electrospun polyurethane nanofibers. J. Mater. Sci. 2020, 55, 12592–12606.
Duan, L. Y.; Fu, S. R.; Deng, H.; Zhang, Q.; Wang, K.; Chen, F.; Fu, Q. The resistivity–strain behavior of conductive polymer composites: Stability and sensitivity. J. Mater. Chem. A 2014, 2, 17085–17098.
Wang, Y. L.; Jia, Y. Y.; Zhou, Y. J.; Wang, Y.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. Ultra-stretchable, sensitive and durable strain sensors based on polydopamine encapsulated carbon nanotubes/elastic bands. J. Mater. Chem. C 2018, 6, 8160–8170.
Wang, X. P.; Meng, S.; Tebyetekerwa, M.; Li, Y. L.; Pionteck, J.; Sun, B.; Qin, Z. Y.; Zhu, M. F. Highly sensitive and stretchable piezoresistive strain sensor based on conductive poly(styrene-butadiene-styrene)/few layer graphene composite fiber. Compos. Part A Appl. Sci. Manuf. 2018, 105, 291–299.
Lu, X. Y.; Si, Y.; Zhang, S. C.; Yu, J. Y.; Ding, B. In situ synthesis of mechanically robust, transparent nanofiber-reinforced hydrogels for highly sensitive multiple sensing. Adv. Funct. Mater. 2021, 31, 2103117.
Liu, H.; Huang, W. J.; Gao, J. C.; Dai, K.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y.; Yan, X. R.; Guo, J.; Guo, Z. H. Piezoresistive behavior of porous carbon nanotube-thermoplastic polyurethane conductive nanocomposites with ultrahigh compressibility. Appl. Phys. Lett. 2016, 108, 011904.
Li, X. T.; Koh, K. H.; Xue, J. Q.; So, C. H.; Xiao, N.; Tin, C.; Wai, K.; Lai, C. 1D-2D nanohybrid-based textile strain sensor to boost multiscale deformative motion sensing performance. Nano Res. 2022, 15, 8398–8409.